数列极限的运算法则

数列极限的运算法则如下:

前提条件:

各数列均有极限;

相加减时必须是有限个数列才能用法则。

极限的三大性质:

极限的唯一性、极限的有界性、极限的保序性。

极限的定义(描述性的):

如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即 无限地接近于0),a叫数列的极限,可记做当n→+∞时,an→a。

an无限接近于a的方式有三种:

递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a;

递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a;

摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a。

严格定义:

即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足 ,a叫数列的极限。

“?xn?以?a?为极限”的几何解释:

将常数a及数列各项x1,x2,...,xn,...在数轴上找出相应的点,再在数轴上作开区间(aε,a+ε)。

当?n>N?时,满足?|xn?a|<ε?,亦即满足?a?ε<xn<a+ε?。也就是说从?N+1?开始,以后无穷多项都落在开区间?(a?ε,a+ε)内。