一个有理数不是整数就是分数

一个有理数不是整数就是分数,这说法是正确的。

1.有理数

有理数是整数和分数的统称,是整数和分数的集合。整数也可看作是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

2.整数

整数是正整数、零、负整数的集合。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。

整数不包括小数、分数。如果不加特殊说明,所涉及的数都是整数,所采用的字母也表示整数。整数可以看作分母为1的分数。

在整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n为整数);奇数则可表示为2n+1(或2n-1)。偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。

3.分数

分数原是指整体的一部分,或更一般地,任何数量相等的部分。表现形式为一个整数a和一个整数b的比。

分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。