什么是方程?

可以先从方程的定义开始说:

方程式或简称方程,是含有未知数的等式。

所以,最简单地说,方程最为根本的一点,就是它是等式,也就是说,式子的等号“=”的左右两边在某个确定的条件下,是相等的。而这个定义的另一个关键,就是未知数了。

再来想想什么是未知数:

:这里的x是未知数,而这个未知数x表示的也正是某个数,为了使得这个等式成立,于是我们就有了这样的解:;

:这里有两个未知数,却无法获得确切的x、y的大小,但是,我们却可以得到x和y的关系,这也可以称为解,因为只要符合这个x、y关系的,就能成为前一个方程的解了;

:这里的未知数有两个,分别是x、y,但是,这样的一个等式是无法同时确定两个未知数的,于是,我们退而求其次,只要这两个未知数有关联,就可以,从而可以得到这样的一个解(下式为奇异解):。

可以看到,未知数和它们的解,形成了另一个等式,当然,因为解可能不唯一,这样的未知数与解的等式也不唯一。更进一步的说,我们可以这样理解未知数:未知数就是保证让它所在的方程成立的某些关系。

所以,如果方程的本质存在,必然也是与构成方程的这两个基本概念——“未知数”和“等式”——有关。等式的概念里面,同时也已经包含了某种关系在其中,同样,未知数也表征了一个关系。那么我们就可以这样抽象出方程的本质了:

方程(或者说方程式)就是,抽取某些特定关系的条件。

与方程比较接近的映射,则仅仅代表了某一个关系,或者说是规则。而方程,则是为了在无穷无尽的关系和规则中,抽取特定的几个规则、关系而存在。

要问方程反映了什么思维特点,这还真的蛮难说的……为了答题圆满点,我就为其添上个:条件思维的特点吧……