物理追击问题

先给你一段结论以及对这段结论的一些常见的不理解之处:

1.速度小者追速度大者

书上写了几个特点:

(1)两者速度相同以前,后面物体与前面物体之间的距离逐渐增大。

(2)两者速度相同时,两物体相聚最远为X0(0是右下角的角码)+△X。

(3)两者速度相同后,后面物体与前面物体之间距离逐渐减小。

注意:△X是开始追击以后,后面物体因为速度大而比前面物体多运动的位移。 X0是指开始追击之前两物体之间的距离。

问题:为什么后面物体在加速,在两者速度相同以前,两者之间距离还在增大呢?后面物体不是速度在不断增加吗?两者距离应该缩小啊。还有那个△X和X0是什么意思,搞不懂。

2.速度大者追速度小者

(1)若△X=X0,则恰能追及,两物体只能相遇一次。

(2)若△X>X0,则相遇两次

(3)若△X<X0,则不能追及,此时两物体最小距离是X0-△X。

我对这段话的理解:

第一个好理解一点,第二个需要用一个物理题目,解释一下你就清楚了

分析:

第一个结论:

这里指的条件是:

速度小者追速度大者,且速度小者的加速度要大于速度大者;最常见的通常情况是一个速度从零开始的A物体以某一恒定的加速度追它前方的一个匀速运动的物体B;

而这个追赶的过程中可以分为三个阶段:

第一阶段,A从静止开始加速,B在匀速,但是A的速度还没有达到B的速度(很显然,从静止加速到一定的速度是需要时间的)。这个过程中,由于VA<VB,换句话就是B跑的比A快,所以A、B之间的距离拉大。

第二阶段,A的速度恰好等于B的速度(由于A在加速,B在匀速,所以A肯定能达到B的速度,但是注意:A还没有赶上B!)

第三阶段,A的速度始终大于B的速度,并最终赶超B,这个过程中二者的距离是在不断缩小的。

第二个结论:

这个结论的条件恰恰相反,处在后面的A物体初始速度很大,B物体的速度比A小。显然,如果A不减速,将会撞上B(或者叫追上B)。题目中的假设就是A在减速,这样的结果就可能撞不上。

如果我们假设A在做减速,而B一直保持匀速,那么这里有三个阶段:

第一阶段:虽然A在减速,但A的速度还是大于B,由于A在后方追赶B,所以距离不断缩小;

第二阶段:A的速度减小到与B相等

第三阶段:A继续减速,B匀速,所以AB距离越来越大。

能不能撞上和撞几次的关键在于最小距离△X出现在哪个阶段,

具体情况就是:

在第一阶段的过程中,距离不断缩小,很可能在第二阶段之前,也就是A的速度与B相等之前,AB就相遇了。即△X等于零了。再往后走的话,△X就等于负了,也就是说A在前面,而B在后面。很明显,B虽然暂时在后面,但B肯定能再次追上A并且反超。所以撞了两次。

撞一次和不撞的情况就不赘述了。

给你出一个题目参考:

一辆轿车A在以速度Va=30m/s行驶过程中,发现正前方61米处有一辆推土机B,B的速度为5m/s,为避免相撞,A以加速度为5m/s?紧急刹车,而B继续匀速行驶。请问汽车A会不会撞上B?

答案是: 撞上

这样可以么?