判断函数奇偶性的方法

一、根据函数奇偶性的定义来判断

(1)一般地,设函数f(x)的定义域为I,如果对定义域内的任意一个x,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数。

(2)一般地,设函数f(x)的定义域为I,如果对定义域内的任意一个x,都有-x∈I,且f(-x)= -f(x),那么函数f(x)就叫做奇函数。

二、根据奇函数偶函数性质来判断

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

三、图像法判断函数奇偶性

1、一个函数是奇函数的充要条件是,这个函数的函数图像关于原点对称。

2、一个函数是偶函数的充要条件是,这个函数的函数图像关于y轴对称。

3、一个函数既是奇函数又是偶函数的充要条件是,这个函数的函数图像既关于原点对称又关于y轴对称。

4、一个函数是非奇非偶函数(既不是奇函数,又不是偶函数)的充要条件是,这个函数的函数图像既不关于原点对称又不关于y轴对称。

四、定义域的对称性判断函数奇偶性

1、函数具有奇偶性的前提是这个函数的定义域关于原点对称。

2、定义域不关于原点对称的函数一定是非奇非偶函数(不具有奇偶性)。

奇偶函数四则运算性质

假设两个具有奇偶性的函数的定义域的交集非空,则这两个函数的的四则运算后的奇偶性一般有如下结论成立:

1、奇函数±奇函数=奇函数。

2、偶函数±偶函数=偶函数。

3、奇函数±偶函数=非奇非偶函数。

4、偶函数±奇函数=非奇非偶函数。

5、奇函数×奇函数=偶函数。

6、偶函数×偶函数=偶函数。

7、奇函数÷奇函数=偶函数。

8、偶函数÷偶函数=偶函数。

9、奇函数×偶函数=奇函数。

10、偶函数×奇函数=奇函数。

11、奇函数÷偶函数=奇函数。

12、偶函数÷奇函数=奇函数。