二次函数解析式怎么算
二次函数的解析式可以用一般式、顶点式、交点式的形式计算。
1、一般式
一般式:y=ax2+bx+c(a≠0)。
2、顶点式
顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。
3、交点式
交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
实际问题的选择:
1、待定系数法
求二次函数的解析式的方法我们一般采用待定系数法,即将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
2、步骤
我们结合待定系数法和三种二次函数基本形式来确定函数关系式,一定要根据不同条件,设出恰当的解析式,具体如下:
第一步:若给出抛物线上任意三点,通常可设一般式y=ax2+bx+c(a≠0)来求解。
第二步:若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式y=a(x-m)2+k(a≠0)来求解。
第三步:若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式y=a(x-x1)(x-x2)(a≠0)来求解。值得注意的是,用交点式来求二次函数的解析式,前提条件是二次函数与x轴有交点坐标。
3、经典例题
已知一个二次函数图象经过(-1,-3)、(2,12)和(1,1)三点,那么这个函数的解析式是_______。
解:将点(-1,-3)、(2,12)和(1,1)坐标代入y=ax2+bx+c,可得:
-3=a(-1)2+b(-1)+c
12=a·22+b·2+c
1=a·12+b·1+c
解得a=3,b=2,c=-4。
因此所求函数解析式为y=3x2+2x-4。
解题反思:已知二次函数图象上的三个点,可设其解析式为y=ax2+bx+c,将三个点的坐标代入,把问题转化为求解一个三元一次方程组,易得a=3,b=2,c=-4,故所求函数解析式为y=3x2+2x-4。