已知数列{an}的前n项和是Sn=n2+n2;(1)求a1,a2; (2)求数列的通项公式an
(1)∵数列{an}的前n项和是Sn=n2+
n
2
∴分别取n=1,2,可得a1=S1=1+
1
2
,a1+a2=S2=22+
2
2
解得a1=
3
2
,a2=
7
2
.
(2)当n≥2时,an=Sn-Sn-1=n2+
n
2
-[(n?1)2+
n?1
2
]=2n-
1
2
,当n=1时也满足上式.
∴an=2n-
1
2
.
(1)∵数列{an}的前n项和是Sn=n2+
n
2
∴分别取n=1,2,可得a1=S1=1+
1
2
,a1+a2=S2=22+
2
2
解得a1=
3
2
,a2=
7
2
.
(2)当n≥2时,an=Sn-Sn-1=n2+
n
2
-[(n?1)2+
n?1
2
]=2n-
1
2
,当n=1时也满足上式.
∴an=2n-
1
2
.