已知数列{an}的前n项和是Sn=n2+n2;(1)求a1,a2; (2)求数列的通项公式an

(1)∵数列{an}的前n项和是Sn=n2+

n

2

∴分别取n=1,2,可得a1=S1=1+

1

2

,a1+a2=S2=22+

2

2

解得a1=

3

2

,a2=

7

2

(2)当n≥2时,an=Sn-Sn-1=n2+

n

2

-[(n?1)2+

n?1

2

]=2n-

1

2

,当n=1时也满足上式.

∴an=2n-

1

2