数学中,集合有哪几种字母,分别是什么意思

数学中的集合字母和意思:

N:非负整数集合或自然数集合{0,1,2,3,……}

N*或N+:正整数集合{1,2,3,……}

Z:整数集合{……,-1,0,1,……}

P:质数集合

Q:有理数集合

Q+:正有理数集合

Q-:负有理数集合

R:实数集合

R+:正实数集合

R-:负实数集合

C:复数集合

:空集合(不含有任何元素的集合称为空集合)

U:全集合(包含了某一问题中所讨论的所有元素的集合)

扩展资料:

一、集合的特性:

(1)确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

(2)互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

(3)无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。(参见序理论)

(4)符号表示规则

元素则通常用a,b,c,d或x等小写字母来表示;而集合通常用A,B,C,D或X等大写字母来表示。当元素a属于集合A时,记作a∈A。假如元素a不属于A,则记作a?A。如果A和B两个集合各自所包含的元素完全一样,则二者相等,写作A=B。

二、集合的运算定律:

(1)交换律:A∩B=B∩A;A∪B=B∪A

(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C

(3)分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)

(4)对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C

(5)同一律:A∪?=A;A∩U=A

(6)求补律:A∪A'=U;A∩A'=?

(7)对合律:A''=A

(8)等幂律:A∪A=A;A∩A=A

(9)零一律:A∪U=U;A∩?=?

(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A

(11)反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A与集合B的交集的补集等于集合A的补集与集合B的补集的并集; 2.集合A与集合B的并集的补集等于集合A的补集与集合B的补集的交集。

(12)容斥原理(特殊情况):

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)

参考资料:

百度百科-集合

参考资料:

百度百科-数学集合