牛顿有什么兴趣?
大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常、成绩 童年的牛顿
一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。 传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。 牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。 牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象有好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。 当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。 后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。
求学岁月
1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。 17世纪中叶,剑桥大学的教育制度还渗透着浓厚的中世纪经院哲学的气味,当牛顿进入剑桥时,那里还在传授一些经院式课程,如逻辑、古文、语法、古代史、神学等等。两年后三一学院出现了新气象,卢卡斯创设了一个独辟蹊径的讲座,规定讲授自然科学知识,如地理、物理、天文和数学课程。 讲座的第一任教授伊萨克·巴罗是个博学的科学家。这位学者独具慧眼,看出了牛顿具有深邃的观察力、敏锐的理解力。于是将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,并把牛顿引向了近代自然科学的研究领域。 在这段学习过程中,牛顿掌握了算术、三角,读了开普勒的《光学》,笛卡尔的《几何学》和《哲学原理》,伽利略的《两大世界体系的对话》,胡克的《显微图集》,还有皇家学会的历史和早期的哲学学报等。 牛顿在巴罗门下的这段时间,是他学习的关键时期。巴罗比牛顿大12岁,精于数学和光学,他对牛顿的才华极为赞赏,认为牛顿的数学才华超过自己。后来,牛顿在回忆时说道:“巴罗博士当时讲授关于运动学的课程,也许正是这些课程促使我去研究这方面的问题。” 当时,牛顿在数学上很大程度是依靠自学。他学习了欧几里得的《几何原本》、笛卡尔的《几何学》、沃利斯的《无穷算术》、巴罗的《数学讲义》及韦达等许多数学家的著作。其中,对牛顿具有决定性影响的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,它们将牛顿迅速引导到当时数学最前沿~解析几何与微积分。1664年,牛顿被选为巴罗的助手,第二年,剑桥大学评议会通过了授予牛顿大学学士学位的决定。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。 由于牛顿在剑桥受到数学和自然科学的熏陶和培养,对探索自然现象产生浓厚的兴趣,家乡安静的环境又使得他的思想展翅飞翔。1665~1666年这段短暂的时光成为牛顿科学生涯中的黄金岁月,他在自然科学领域内思潮奔腾,才华迸发,思考前人从未思考过的问题,踏进了前人没有涉及的领域,创建了前所未有的惊人业绩。 1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。 总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。 1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。
建立微积分
在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。 笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。 微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。 牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。 在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。 牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
晚年
对于牛顿的晚年,人们普遍存在一些误解。认为牛顿开始相信上帝。但事实并非如此。对于微积分的研究是牛顿晚年的研究重点。微积分可以在实验的基础上推导出物理量之间关系的函数形式,但具体函数物无从知晓(简单来说,就是知道谁和谁呈正比或反比关系,但作为初始条件的比例系数不知道),只能通过实验得知。所以,牛顿提出“上帝第一次推动”这一个概念,就是说,像密度等物质固有属性是大自然自己制定的,无法更改,也无从推导。而人们的误解普遍来源于“上帝第一次推动”,误解为“上帝第一次推动力”(牛顿生活的时代还没有力的物理概念,牛顿定律是牛顿通过动量形式表达出来的)。