高二数学公式

116定理 一条弧所对的圆周角等于它所对的圆心角的一半  117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等  118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径  119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形  120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角  121①直线l和⊙o相交 d<r  ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r  122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线  123切线的性质定理 圆的切线垂直于经过切点的半径  124推论1 经过圆心且垂直于切线的直线必经过切点  125推论2 经过切点且垂直于切线的直线必经过圆心  126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角  127圆的外切四边形的两组对边的和相等  128弦切角定理 弦切角等于它所夹的弧对的圆周角  129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等  130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等  131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的  两条线段的比例中项  132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割  线与圆交点的两条线段长的比例中项  133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等  134如果两个圆相切,那么切点一定在连心线上  135①两圆外离 d>r+r ②两圆外切 d=r+r  ③两圆相交 r-r<d<r+r(r>r)  ④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)  136定理 相交两圆的连心线垂直平分两圆的公***弦  137定理 把圆分成n(n≥3):  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形  138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆  139正n边形的每个内角都等于(n-2)×180°/n  140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形  141正n边形的面积sn=pnrn/2 p表示正n边形的周长  142正三角形面积√3a/4 a表示边长  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为  360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:l=nπr/180  145扇形面积公式:s扇形=nπr2/360=lr/2  146内公切线长= d-(r-r) 外公切线长= d-(r+r)  147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149如果一个三角形的两个角相等,那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形 数学归纳法 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立; (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1是命题也成立。 阶乘: n!=1×2×3×……×n,(n为不小于0的整数) 规定0!=1。 排列,组合 ·排列 从n个不同元素中取m个元素的所有排列个数, A(n,m)= n!/m! (m是上标,n是下标,都是不小于0的整数,且m≤n) ··组合 从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。所有不同组合的种数 C(n,m)= A(n,m)/(n-m)!=n!/〔m!·(n-m)!〕 (m是上标,n是下标,都是不小于0的整数,且m≤n) ◆组合数的性质: C(n,k) = C(n,k-1) + C(n-1,k-1); 对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数 ◆二项式定理(binomial theorem) (a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+...+C(n,n)×a^0×b^n 所以,有 C(n,0)+C(n,1)+C(n,2)+...+C(n,n) =C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n =(1+1)^n  = 2^n 微积分学  极限的定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式:  |f(x)-A|<ε  那么常数A就叫做函数f(x)当x→x。时的极限 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 导数: 定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx 几种常见函数的导数公式:  ① C'=0(C为常数函数); ② (x^n)'= nx^(n-1) (n∈Q);  ③ (sinx)' = cosx; ④ (cosx)' = - sinx; ⑤ (e^x)' = e^x; ⑥ (a^x)' = (a^x) * Ina (ln为自然对数) ⑦ (Inx)' = 1/x(ln为自然对数) ⑧ (log a x)'=1/(xlna) ,(a>0且a不等于1) ⑨(sinh(x))'=cosh(x) ⑩(cosh(x))'=sinh(x) (tanh(x))'=sech^2(x) (coth(x))'=-csch^2(x) (sech(x))'=-sech(x)tanh(x) (csch(x))'=-csch(x)coth(x) (arcsinh(x))'=1/sqrt(x^2+1) (arccosh(x))'=1/sqrt(x^2-1) (x>1) (arctanh(x))'=1/(1-x^2) (|x|<1) (arccoth(x))'=1/(1-x^2) (|x|>1) (chx)‘=shx, (shx)'=chx: (3)导数的四则运算法则:  ①(u±v)'=u'±v'  ②(uv)'=u'v+uv'  ③(u/v)'=(u'v-uv')/ v^2 (4)复合函数的导数  复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则): d f[u(x)]/dx=(d f/du)*(du/dx)。 [∫(上限h(x),下限g(x)) f(x)dx]’=f[h(x)]·h'(x)- f[g(x)]·g'(x) 洛必达法则(L'Hospital): 是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。  利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。比如利用泰勒公式求解。 ②洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等。 不定积分 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。 记作∫f(x)dx。 其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 由定义可知: 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。 也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数. ·基本公式: 1)∫0dx=c;  ∫a dx=ax+c; 2)∫x^udx=(x^u+1)/(u+1)+c; 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c; 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c; 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; ·分部积分法: ∫u(x)·v'(x) dx=∫u(x) d v(x)=u(x)·v(x) -∫v(x) d u(x)=u(x)·v(x) -∫u'(x)·v(x) dx. ☆泰勒公式(Taylor's formula) 泰勒中值定理:若f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和: f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!?(x-x0)^2,+f'''(x0)/3!?(x-x0)^3+……+f的n阶导数?(x0)/n!?(x-x0)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!?(x-x0)^(n+1)为拉格朗日型的余项,这里ξ在x和x0之间。 定积分 形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 牛顿-莱布尼兹公式:若F'(x)=f(x),那么∫f(x) dx (上限a下限b)=F(a)-F(b) 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。 微分方程 凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单 的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程 特征根法是解常系数齐次线性微分方程的一种通用方法。 如 二阶常系数齐次线性微分方程y''+py'+qy=0的通解: 设特征方程r*r+p*r+q=0两根为r1,r2。 1 若实根r1不等于r2 y=C1*e^(r1x)+C2*e^(r2x). 2 若实根r=r1=r2 y=(C1+C2x)*e^(rx) 3 若有一对***轭复根 r1, 2=λ±ib : y=e^(λx)·[C1·cos(bx)+ C2·sin(bx)]