函数的奇偶性判断方法
函数的奇偶性判断方法
1.方法介绍
定义法:对于f(x)定义域A内的任意一个x,如果都有f(-x)=-f(x),那么f(x)为奇函数;如果都有f(-x)=f(x),那么f(x)为偶函数。求和(差)法:若f(x)-f(-x)=2f(x),则f(x)为奇函数。若f(x)+f(-x)=2f(x),则f(x)为偶函数。
用求商法判断:若f(-x)÷f(x)=-1,则f(x)为奇函数。若f(-x)÷f(x)=1,则f(x)为偶函数。图像判断法:奇函数的图像关于原点中心对称,而偶函数的图像关于y轴对称。
2.函数介绍
函数,数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
3.表示
首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。