空间几何体,这里用了什么公式?
几何体(geometric solid)亦称立体,是立体几何的基本概念之一。几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念,在几何学中,人们把若干几何面(平面或曲面)所围成的有限形体称为几何体,围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点,几何体也可看成空间中若干几何面分割出来的有限空间区域,立体几何首先研究的是一些较简单的几何体的几何性质,如多面体、旋转体以及它们的组合体等。
几何体:(1)当我们只研究一个物体的形状、大小,而不研究其它的其它性质(如颜色、重量、硬度等)的时候,我们就把这个物体叫做几何体,简称体。例如,图中的纸盒和木块,虽然它们的颜色、重量、硬度以及制作的材料等不相同,但只要它们的形状、大小相同,我们就认为它们是完全相等的两个几何体。实际上,由于纸盒和木块的形状、大小都相同,它们是两个相同的长方体[2]?。(2)由平面和曲面所围成的空间的有限部分,如长方体、正 方体、圆柱体、球体等。
物体的形状大小有时叫做“空间形式”,几何体是只从空间形式的观点来加以考虑的现实物体。
从运动的观点,“体”可以看成是由“面”运动所占有的空间。
图1
从三个不同位置观察同一个空间几何体而画出的图形称之为三视图。主要包括主视图、俯视图、左视图三个基本视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式。从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。如图4为图3的三视图,图6为图5的三视图。
体是由面围成的。面有平面,有曲面。例如长方体是由六个平面围成的;球是由一个曲面围成的;圆柱是由一个曲面和两个平面围成的。按构成体的主要元素——面的特点,可以把体分成两类:
第一类是有曲面参与其中的曲面几何体,也称曲面立体,如:圆柱体、球体。
第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体。
由若干平面围成的基本几何体称为平面立体。平面立体主要有棱柱体和棱锥体两种。棱柱体的棱互相平行,棱锥的棱线交于一点,棱锥被截顶则形成棱台。平面立体以其棱数命名,如四棱柱、六棱柱、五棱锥、三棱锥、四棱台等。棱柱是由棱面和顶面、底面所围成,相邻两棱面的交线,称为棱线。棱锥是由棱面和底面所围成,各棱面是有一个公***顶点的三角形。
由曲面或曲面与平面围成的基本几何体称为曲面立体。常见曲面立体有圆柱、圆锥、圆球等。它们的曲表面可以看作是母线绕轴线回转而形成的,因此,这类曲面立体又称为回转体,其曲表面称为回转面。
回转面的形成
一条直母线围绕与它平行的轴线旋转形成圆柱面;一条直母线围绕与它相交的轴线旋转形成圆锥面;当母线为圆,轴线为其直径时,母线绕轴线旋转即形成球面。
希望我能帮助你解疑释惑。