机器学习与深度学习指的是

机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。

区别:

一、数据依赖性

深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度学习算法的性能并不好。这是因为深度学习算法需要大量的数据来完美地理解它。

三、硬件依赖

深度学习算法需要进行大量的矩阵运算,GPU 主要用来高效优化矩阵运算,所以 GPU 是深度学习正常工作的必须硬件。与传统机器学习算法相比,深度学习更依赖安装 GPU 的高端机器。

二、特征处理

特征处理是将领域知识放入特征提取器里面来减少数据的复杂度并生成使学习算法工作的更好的模式的过程。特征处理过程很耗时而且需要专业知识。

深度学习尝试从数据中直接获取高等级的特征,这是深度学习与传统机器学习算法的主要的不同。基于此,深度学习削减了对每一个问题设计特征提取器的工作。

例如,卷积神经网络尝试在前边的层学习低等级的特征,然后学习部分人脸,然后是高级的人脸的描述。更多信息可以阅读神经网络机器在深度学习里面的有趣应用。

当应用传统机器学习算法解决问题的时候,传统机器学习通常会将问题分解为多个子问题并逐个子问题解决最后结合所有子问题的结果获得最终结果。相反,深度学习提倡直接的端到端的解决问题。