大数据是什么?有什么价值作用?
?“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。
大数据的应用其实早已渗透到人们生活中的方方面面:亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界?当下,很多行业都开始增加对大数据的需求。大数据时代不仅处理着海量的数据,同时也加工、传播、分享它们。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟普通用户往往更关心结果的展示。伴随去年底百度地图采用LBS定位春运的可视化大数据,就引起了学界对新闻创新和大数据可视化的热议。
大数据是需要更新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。而这些信息资产依托客观的数据基础衍生出更多有价值的信息。
1、根据销售费习惯以及需求为其推荐更加适合的产品,因此相关服务的企业可以利用大数据进行精准营销,从而实现双赢互利的作用;
2、当企业遇到瓶颈或者行业遭遇困境的时候,中小微企业可以利用大数据快速反应做好服务转型; 3、企业战略布局以及资源配置的环节,可以通过大数据找到更加贴近事实的一句,同时对于面临互联网压力之下必须转型的传统企业提供与时俱进的契机。企业组织利用相关数据和分析,可以帮助它们实现降低成本、提高效率、开发新产品、做出更明智的业务决策等等目标。下面是一些关于大数据应用目前已经可以解决的问题:
?1、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元;
?2、为成千上万的快递车辆规划实时交通路线,躲避拥堵;
3、分析所有SKU,以利润最大化为目标来定价和清理库存;
4、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息;
5、从大量客户中快速识别出金牌客户;
6、使用点击流分析和数据挖掘来规避欺诈行为。一、技术价值
大数据,根本上与数学、统计学、计算机学、数据学等基本理论知识无法分割,技术水平突飞猛进给数字领域带来最直接的跃进。
App研发应用、数据库编写应用等促进人类社会技术进步的价值都来源于大数据的发明和运营。
大数据不仅创造了新的计算方式、技术处理方式,更加为其他技术的研发、应用和落地提供基础,例如人工智能等。
大数据中客户与企业进行交易的数据,是大数据技术价值的核心映射。客户的交易行为通过企业内部系统留存,基本以“事后”数据为主。
交易数据是推进企业数据驱动业务,与客户联系沟通、获得有效和分析数据的初级门槛,无论大数据获取能力如何发展,直接的交易信息永远都是第一有效和值得关注的。
淘宝的交易分析报告中提到,大额买单后的重购次单和同店重购次单比例分别为25.0%和16.8%,要明显高于普通买单的18.8%和10.7%,则表示在首次买单获取了对卖家服务和商品质量的信任后,次单完全存在放大金额的可能,并且比普通买单的可能要高得多。
由此引导卖家增进服务、坚守质量,并适时推出捆绑推荐,以求同类商品同店大额下单的几率。
只有有了大数据的处理技术,交易行为才能够得到记录分析,企业的大数据技术研发、应用和落地才能拥有基础,以开发更新更适合时代的企业产业。
目前有很多传统企业盲目行走大数据的道路,但其实大数据技术能力并没有建立起来,真正获得了有效数据并得以分析利用的就很少,很多该做的“埋点”没有做,数据的统计也缺乏技术支撑。
这时大数据的技术价值就会显得尤为重要,且是所有价值的基础,一梁塌,全屋倒。
?无法自主革新的企业会求助一些以提供大数据服务为产品的新型公司,也就催生了各种大数据公司雨后春笋般的出现,至于这些公司如何为传统转型服务在后面会提到。
二、商业价值
?在实际的升级运行中,习惯于传统经营的企业也许经常会为这样几个基础的问题感到困惑:如何提升运营现状?目标客群是谁?有哪些特点?与竞品相比竞争优势在哪?现有经营问题又是什么?
而这些看似简单的问题背后却隐藏着海量数据的分析挖掘:客流数据、经营数据、以往活动相关数据、场内店铺信息、竞品数据,类此种种的深入透析才能帮助企业画像潜客、分析经营、建立会员体系、策划活动执行。
?单就运营而论,数据作为一种度量方式,能够真实的反映运营状况,帮助企业进一步了解产品、了解用户、了解渠道进而优化运营策略。