求数列通项的方法总结

求数列通项的方法总结介绍如下:

一、常规数列的通项

例1:求下列数列的通项公式

(1)2(22—1),3(32—1),4(42—1),5(52—1),…

(2)-1×2(1),2×3(1),-3×4(1),4×5(1),…

(3)3(2),1,7(10),9(17),11(26),…

解:(1)an=n(n2—1) (2)an= n(n+1)((-1)n) (3) an=2n+1(n2+1)

评注:认真观察所给数据的结构特征,找出an与n的对应关系,正确写出对应的表达式。

二、等差、等比数列的通项

直接利用通项公式an=a1+(n-1)d和an=a1qn-1写通项,但先要根据条件寻求首项、公差和公比。

三、摆动数列的通项

例2:写出数列1,-1,1,-1,…的一个通项公式。

解:an=(-1)n-1

变式1:求数列0,2,0,2,0,2,…的一个通项公式。

分析与解答:若每一项均减去1,数列相应变为-1,1,-1,1,…

故数列的通项公式为an=1+(-1)n

变式2:求数列3,0,3,0,3,0,…的一个通项公式。

分析与解答:若每一项均乘以3(2),数列相应变为2,0,2,0,…

故数列的通项公式为an=2(3)[1+(-1)n-1 ]

变式3:求数列5,1,5,1,5,1,…的一个通项公式。

分析与解答1:若每一项均减去1,数列相应变为4,0,4,0,…

故数列的通项公式为an=1++2×3(2)[1+(-1)n-1 ]=1+3(4)[1+(-1)n-1 ]

分析与解答2:若每一项均减去3,数列相应变为2,-2,2,-2,…

故数列的通项公式为an=3+2(-1)n-1

四、循环数列的通项

例3:写出数列0.1,0.01,0.001,0.0001,…的一个通项公式。

解:an= 10n(1)

变式1:求数列0.5,0.05,0.005,…的一个通项公式。

解:an= 10n(5)

变式2:求数列0.9,0.99,0.999,…的一个通项公式。

分析与解答:此数列每一项分别与数列0.1,0.01,0.001,0.0001,…的每一项对应相加得到的项全部都是1,于是an=1- 10n(1)

变式3:求数列0.7,0.77,0.777,0.7777,…的一个通项公式。

解:an= 9(7)(1- 10n(1))

例4:写出数列1,10,100,1000,…的一个通项公式。

解:an=10n-1

变式1:求数列9,99,999,…的一个通项公式。

分析与解答:此数列每一项都加上1就得到数列10,100,1000,… 故an=10n-1。

变式2:写出数列4,44,444,4444…的一个通项公式。

解:an= 9(4)(10n-1)

评注:平日教与学的过程中务必要对基本的数列通项公式进行过关,这就需要提高课堂教与学的效率,多加总结、反思,注意联想与对比分析,做到触类旁通,也就无需再害怕复杂数列的通项公式了。

五、通过等差、等比数列求和来求通项

例5:求下列数列的通项公式

(1)0.7,0.77,0.777,… (2)3,33,333,3333,…

(3)12,1212,121212,… (4)1,1+2,1+2+3,…

解:(1)an==7×=7×(0.1+0.01+0.001+…+)

=7×(10(1)+102(1)+103(1)+…+10n(1))==9(7)(1-10n(1))

(2)an==3×=3×(1+10+100+…+10n)=3×1-10(1-10n)=3(1)(10n-1)

(3)an==12×(1+100+10000+…+100n-1)=12×1-100(1-100n)=33(4)(102n-1)

(4)an=1+2+3+…n=2(n(n+1))

评注:关键是根据数据的变化规律搞清楚第n项的数据特点。