探索勾股定理

(1)∵
1
2
(a+b)(a+b)=2×
1
2
ab+
1
2
c 2 ,

∴(a+b)(a+b)=2ab+c 2 ,

∴a 2 +2ab+b 2 =2ab+c 2 ,

∴a 2 +b 2 =c 2 ;

(2)∵S 1 =

1
8
πAC 2 ,S 2 =
1
8
πBC 2 ,

∴S 1 +S 2 =

1
8
π(AC 2 +BC 2 )=
1
8
πAB 2 =
9
2
π;

(3)设CO=xkm,则OD=(80-x)km.

∵O到A、B两个城市的距离相等,

∴AO=BO,即AO 2 =BO 2 ,

由勾股定理,得40 2 +x 2 =60 2 +(80-x) 2 ,

解得:x=52.5.

即O应建在离C点52.5千米处.

故答案为

9
2
π.