安培环路定理公式
安培环路定理的公式是∮B·dL=μ?∑I。
在稳恒磁场中,磁感应强度B沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。这个结论称为安培环路定理(Ampere circuital theorem)。安培环路定理可以由毕奥-萨伐尔定律导出。它反映了稳恒磁场的磁感应线和载流导线相互套连的性质。
安培定律可由毕奥-萨伐尔定律和磁场的叠加性证明(请参阅毕奥-萨伐尔定律)。在静磁学中,安培定律的角色与高斯定律在静电学的角色类似。
当系统组态具有适当的对称性时,我们可以利用这对称性,使用安培定律来便利地计算磁场。例如,当计算一条直线的载流导线或一个无限长螺线管的磁场时,可以采用圆柱坐标系来匹配系统的圆柱对称性。
根据开尔文-斯托克斯定理,这方程也可以写为微分形式。只有当电场不含时间的时候,也就是说,当电场对于时间的偏微分等于零的时候,这方程才成立。
计算应用
利用安培环路定理求磁场的前提条件:如果在某个载流导体的稳恒磁场中,可以找到一条闭合环路l,该环路上的磁感强度B大小处处相等,B的方向和环路的绕行方向也处处同向,这样利用安培环路定理求磁感强度B的问题,就转化为求环路长度。
以及求环路所包围的电流代数和的问题,即利用安培环路定理求磁场的适用范围:在磁场中能否找到上述的环路,取决于该磁场分布的对称性,而磁场分布的对称性又来源于电流分布的对称性。因此,只有下述几种电流的磁场,才能够利用安培环路定理求解。