等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=(  )?

解题思路:利用等比数列的通项公式即可得出.

∵等比数列{an}满足a2+a4=20,a3+a5=40,

∴a3+a5=q(a2+a4)=20q=40,解得q=2.

故选:C.

,6,a2+a4=a3x1/q+a5x1/q,得q=2

再将a1带入得a1=2

则sn=a1(1-q的n次方)/1-q

带入就行了,1,等比数列{a n}满足a 2+a 4=20,a 3+a 5=40,则公比q=(  )

A. [1/2]

B. -[1/2]

C. 2

D. -2