世界近代三大数学难题各是什么,内容
1、费马大定理
费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。
内容:当整数n >2时,关于x, y, z的方程 x? + y? = z?没有正整数解。
2、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。地图四色定理最先是由一位叫古德里的英国大学生提出来的。
四色问题的内容:任何一张地图只用四种颜色就能使具有***同边界的国家着上不同的颜色。也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示:将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
3、哥德巴赫猜想
1742年6月7日,哥德巴赫提出了著名的哥德巴赫猜想。
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
扩展资料
1、费马大定理
史上最精彩的一个数学谜题。证明费马大定理的过程是一部数学史。费马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
2、四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公***点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。
计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。
3、从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
百度百科-费马大定理
百度百科-四色定理
百度百科-哥德巴赫猜想