关于圆锥曲线知识点总结
解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。
在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。
1、三种圆锥曲线的研究
(1)统一定义,三种圆锥曲线均可看成是这样的点集: ,其中F为定点,d为P到定直线的l距离,F l,如图。
因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。
当0<e<1时,点P轨迹是椭圆;当e>1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。
(2)椭圆及双曲线几何定义:椭圆:{P||PF1|+|PF2|=2a,2a>|F1F2|>0,F1、F2为定点},双曲线{P|||PF1|-|PF2||=2a,|F1F2|>2a>0,F1,F2为定点}。
(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。
①定性:焦点在与准线垂直的对称轴上
椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。
②定量:
椭 圆
双 曲 线
抛 物 线
焦 距
2c
长轴长
2a
——
实轴长
——
2a
短轴长
2b
焦点到对应
准线距离
P=2
p
通径长
2·
2p
离心率
1
基本量关系
a2=b2+c2
C2=a2+b2
(4)圆锥曲线的标准方程及解析量(随坐标改变而变)
举焦点在x轴上的方程如下:
椭 圆
双 曲 线
抛 物 线
标准方程
(a>b>0)
(a>0,b>0)
y2=2px(p>0)
顶 点
(±a,0)
(0,±b)
(±a,0)
(0,0)
焦 点
(±c,0)
( ,0)
准 线
X=±
x=
中 心
(0,0)
有界性
|x|≤a
|y|≤b
|x|≥a
x≥0
焦半径
P(x0,y0)为圆锥曲线上一点,F1、F2分别为左、右焦点
|PF1|=a+ex0
|PF2|=a-ex0
P在右支时:
|PF1|=a+ex0
|PF2|=-a+ex0
P在左支时:
|PF1|=-a-ex0
|PF2|=a-ex0
|PF|=x0+
总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。
2、直线和圆锥曲线位置关系
(1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。
其中直线和曲线只有一个公***点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。
直线和抛物线只有一个公***点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x或y方程的二次项系数为0。
(2)直线和圆锥曲线相交时,交点坐标就是方程组的解。
当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。
4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。