什么叫反函数定义

反函数定义如下:

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"?1"指的是函数幂,但不是指数幂。

相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图象关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图象上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图象上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。

于是我们可以知道,如果两个函数的图象关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。

在微积分里,f(n)(x)是用来指f的n次微分的。

若一函数有反函数,此函数便称为可逆的。

性质

1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

2、一个函数与它的反函数在相应区间上单调性一致;

3、大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数;

4、一段连续的函数的单调性在对应区间内具有一致性;

5、严增(减)的函数一定有严格增(减)的反函数;

6、反函数是相互的且具有唯一性;

7、定义域、值域相反对应法则互逆(三反)。