高斯19岁就解决正17边形
高斯19岁就解决正17边形,相关内容如下:
1.质数分布定理和最小二乘法
在高斯18岁的时候,他就自己发现了质数分布定理和最小二乘法,根据这个发现,他自己创造了一套测量数据处理方法,根据这个新方法,他得到了一个具有概率性质的测量结果。
并且把这个测量结果画成了曲线,这种曲线函数分布被后人称作为高斯分布图,也被叫做标准正态分布。
2.正十七边形的尺规作图法
高斯19岁的时候就发现了正十七边形的尺规作图法,当年欧几里得提出了尺规作图,可是还遗留了许多问题,比如正多边形的尺规作图,难倒了2000多年来的许多数学家,高斯在大学二年级时就得出正十七边形的尺规作图法。
并给出了可用尺规作图的正多边形的条件,解决了两千年来悬而未决的难题,他也是世界上第一个成功用代数方法解决几何难题的数学家。要知道,那个时候他才19岁。
他在19岁那年又证明了二次互反律,二次互反律在数论的发展史中处于中心地位。就连欧拉都没有给出严格的证明,高斯不仅给出了第一个严格的证明,后来又给出了7种证明方式,完全不给其他的数学家活路。
3.虚数以意义
高斯还给了虚数以意义,对复数的发展作出重要的推动作用,他在1799年、1815年、1816年对代数基本定理作出的三个证明中,都假定了复数和直角坐标平面上的点一一对应,1831年他对复平面作出详细的说明。
4.复数
1832年,高斯系统地完善了复数理论,他第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。
统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法。