高中数学必修一基本初等函数公式
基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).
当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。
注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
1、0的正分数指数幂等于0,
2、0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
1、a>1
2、0
3、向x、y轴正负方向无限延伸
4、函数的定义域为R
5、图象关于原点和y轴不对称
6、非奇非偶函数
7、函数图象都在x轴上方
8、函数的值域为R+
9、函数图象都过定点(0,1)
自左向右看,图象逐渐上升;
自左向右看,图象逐渐下降。
增函数;减函数
在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡;图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;
注意:利用函数的单调性,结合图象还可以看出:
二、对数函数
(一)对数
1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:
1 )注意底数的限制 ,且 ;
2 )注意对数的书写格式.
2、两个重要对数:
1 常用对数:以10为底的对数 ;
2 自然对数:以无理数 为底的对数的对数 .
对数式与指数式的互化
对数式 指数式
对数底数 ← → 幂底数
对数 ← → 指数
真数 ← → 幂
(二)对数的运算性质
注意:换底公式
利用换底公式推导下面的结论(1) ;(2) .
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:
1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如: , 都不是对数函数,而只能称其为对数型函数.
2) 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>1
0
函数性质
1函数图象都在y轴右侧
2函数的定义域为(0,+∞)
3图象关于原点和y轴不对称
4非奇非偶函数
5向y轴正负方向无限延伸
6函数的值域为R
7函数图象都过定点(1,0)
自左向右看,图象逐渐上升
自左向右看,图象逐渐下降
增函数
减函数
第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
求函数 的零点:
1 (代数法)求方程 的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
三角函数和反三角函数
这是起源于几何学的最简单的超越函数。高等分析学中计量角度的方法是所谓弧度法,即以单位圆周上的弧段量度相应的圆心角。三角函数是sinx、cosx以及由它们导出的 和它们的定义如图1所示。sinx和cosx在 x=0处的泰勒展式为 (2) (3)它们的收敛半径为。sinx、cosx、tanx、cotx 、secx 、cosecx的反函数分别为 arcsinx、 arccosx、 arctanx、arccotx、arcsecx、arccosecx(或记为sin-1x、 cos-1x、tan-1x、cot-1x、sec-1x、cosec-1x),
初等函数图形
并称为反三角函数。指数函数和对数函数设α为一正数,则y=αz表示以α为底的指数函数(图2)。其反函数y=logαx称为以α为底的对数函数(图3)。特别当α=e时称y=ez(或expx)和y=logαx=lnx(或logx)为指数函数和对数函数。logx能由下面的积分式定义它表示由双曲线 、下由t轴、左右分别由t=1和t=x两直线所围的面积。由此可知当x在正实轴上变化时,y=logx取值在实轴上,且log1=0。它是x的增函数,导数。此外logx满足加法定理,即log(x1·x2)=logx1+logx2。
对数函数的反函数指数函数
ex是定义在实轴上取值于正实数的增函数,且 e0=1。 ex的导数与它本身相同。此外ex满足乘法定理,即 。ex在x=0处的泰勒展式为。
双曲函数和反双曲函数
由指数函数经有理运算可导出双曲函
初等函数
数。其性质与三角函数很相似,并以 sinhx、coshx、tanhx、cothx、sechx、cosechx表示之,其定义如下:分别称为双曲正弦(图4)和双曲余弦(图5)。像三角函数一样,由它们导出的双曲正切(图6)tanhx=sinhx/coshx,双曲余切(图7)cothx=coshx/sinhx等都称为双曲函数。它们有如下的几何解释,即双曲线x2-y2=1(x>0)上取一点M,又令O为原点,N=(1,0),将ON,OM和双曲线上的弧所围面积记为θ/2,点M的坐标视为θ的函数,并记为coshθ和sinhθ,即有表示式(5)。初等函数 初等函数 初等函数 初等函数 复变量初等函数定义域为复数域的初等函数。
有理函数、幂函数和根式函数
两个复系数的多项式之比为有理函数,它实现扩充的复平面到自身的解析映射。分式线性函数 是一个特殊的有理函数,它在复分析中有重要的意义。另一个特殊情形是幂函数w=zn,n 是自然数,
初等函数
它在全平面是解析的,且。因此当n≥2时,它在全平面除z=0以外到处实现***形映射(保角映射)。它将圆周丨z丨= r变为圆周|w|=rn,将射线argz=θ变为射线argw=nθ。任何一个区域,只要该区域中任两点的辐角差小于2π/n,它就是w=zn的单叶性区域。幂函数 w=zn的反函数为根式函数,它有n 个值,(k=0,1,…,n-1),称为它的分支。它们在任何区域θ1z <θ1+2π 中都单值解析而且将这个区域变为区域。它们的导数为。
指数函数和对数函数
在指数函数式(4)中将x换为复变量z,便得到复变量的指数函数w=ez,并且,显然有 (k为整数)。复指数函数有类似于实指数函数的性质:ez是一整函数且对任何复数z,ez≠0;它满足乘法定理:;ez以2kπi为周期,即;并且它的导数与本身相同,即 。函数w=ez在全平面实现***形映射。任何一个区域,只要对区域内任两点,其虚部之差小于2π,它就是ez的单叶性区域。例如,指数函数把直线x=x0变为圆周,把直线y=y0变为射线argw=y0,因而把区域Sk变为区域 0w <2π,把宽度为β的带形区域α0< α0+β(β≤2π)变为开度为β的角形域α0w<α0+β。对数函数w=Lnz是指数函数ez的反函数,它有无穷多个值2kπ)(k 为整数),称为它的分支。每一个分支在区域θ0z<θ0+ 2π 中是解析的,且有。对数函数把这个区域单叶地变为带形区域θ0w <θ0+2π,也把开度为β的角形域θ0z<θ0+β(β≤2π)变为宽度为β的带形区域θ0w <θ0+β。 特别(Lnz)0=Lnz是实对数函数 lnz在复数域上的推广。象实对数函数一样,它满足加法定理,即对任两个不为零的复数z1和z2。