指数分布的无记忆性是什么?
指数分布的无记忆性是马尔科夫链无后效性,也就是取决于你当前的状态。
所以在分布中,只有指数分布能满足这一点,因为指数分布的无记忆性,不管你之前在某个状态停留了多少时间,并不影响你是否继续停留或者转移。可以通过积分证明的。
如果是连续性的,那么泊松过程就是一种简单的马尔科夫过程,计算方法基本如上,但是矩阵的意义和性质稍有不同。
指数分布的应用
指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性。
因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。
显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。