abc猜想的研究意义
美国哥伦比亚大学数学家Dorian Goldfeld评价说:“abc猜想如果被证明,将一举解决许多著名的Diophantine问题,包括费马大定理。如果Mochizuki的证明是正确的,这将是21世纪最令人震惊的数学成就之一。”
望月新一的研究工作与前人的努力并没有太多关联。他建立了一套全新的数学方法,使用了一些全新的数学“对象”——这些抽象实体可类比为我们比较熟悉的几何对象、集合、排列、拓扑和矩阵,只有极少的数学家能够完全理解。就如同戈德费尔德所说:“在当今,他或许是唯一一个完全掌握这套方法的人。”
康拉德认为,这项研究工作“包含着大量的深刻思想,数学界要想完全理解消化需要花很长的时间”。整个证明包含四个长篇论文,每一篇都是建立在之前论文的基础上。“需要花费大量的时间来研读并理解这些深奥的长篇证明,所以我们不能仅仅关注此证明的重要性,更重要的是沿着作者的证明思路进行研究。”
望月新一取得的研究成果使得这一切努力都是值得的。康拉德说:“望月新一曾经成功证明过极为艰深的定理,并且他的论文表达严谨,论述周密。这些都使我们对于成功证明abc猜想充满了信心。”另外,他还补充道,所取得的成绩并不仅限于对此证明的确认。“令人感到兴奋的原因不仅仅在于abc猜想或许已被解决,更在于他所使用的方法和思想将会成为以后解决数论问题的有力工具。”
历史上反直觉的却又被验证为正确的理论,数不胜数。 一旦反直觉的理论被证实是正确的,基本上都改变了科学发展的进程。举一个例子:牛顿力学的惯性定律,物体若不受外力就会保持当前的运动状态,这在17世纪无疑是一个重量级的思想炸弹。“物体不受力当然会从运动变为停止”,这是当时的普通人基于每天的经验得出的正常思想。而实际上,这种想法,在任何一个于20世纪学习过初中物理、知道有种力叫摩擦力的人来看,都会显得过于幼稚。但对于当时的人们来说,惯性定理的确是相当违反人类常识的!
ABC猜想之于数论研究者,就好比牛顿惯性定律之于17世纪的普通人,更是违反数学上的常识。这一常识就是:“a和b的质因子与它们之和的质因子,应该没有任何联系。” 原因之一就是,允许加法和乘法在代数上交互,会产生无限可能和不可解问题,比如关于丢番图方程统一方法论的希尔伯特第十问题,早就被证明是不可能的。如果ABC猜想被证明是正确的,那么加法、乘法和质数之间,一定存在人类已知数学理论从未触及过的神秘关联。