高数函数的极限是什么

关于高数函数的极限是什么如下:

设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.

│f(x)-A│<ε,则称数A为函数f(x)当x→+∞时的极限,记作f(x)→A(x→+∞).例y=1/x,x→+∞时极限为y=0函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的. 极限符号可记为lim.

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,而运用ε-δ定义更多的见诸于已知极限值的证明题中.掌握这类证明对初学者深刻理解运用极限定义大有裨益.以x→Xo的极限为例,f(x)在点Xo 以A为极限的定义。

对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x.|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x.时的极限.

问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等.1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。

函数极限性质的合理运用.常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等.如函数极限的唯一性(若极限存在,则在该点的极限是唯一的)

拓展知识:

函数(function)在数学中是两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。

其定义通常分为传统定义和近代定义,前者从运动变化的观点出发,而后者从集合、映射的观点出发。函数概念含有三个要素:定义域A、值域C和对应法则f。