2019年广西高考数学试卷试题及答案解析(答案WORD版)

高考完成了数学科目的考试,考试结束教育部考试中心的数学命题专家就对今年的数学试题进行了分析。

 总的说来,在贯彻落实《国务院关于深化考试招生制度改革的实施意见》的开局之年,高考数学重在增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。数学试卷符合考试大纲和课程标准的各项要求,重视数学基础,注重能力立意,体现课改理念,富有时代特征。试题稳中有新,坚持多角度、多层次地考查考生的逻辑思维、运算求解、空间想象以及数据处理等能力,突出对逻辑推理、创新应用意识与中国优秀传统文化的考查,体现了数学的基础性和工具性作用。

 特点一:创新试题设计,深入考查逻辑推理能力

 数学所考查的逻辑思维、推理方法和分析能力体现了数学作为基础学科的作用,这些在个人的发展过程和认知结构的建构过程中都是必不可少的。通过加强对逻辑推理能力的考查,可以促使学生学习理性思维的方法,养成实事求是、求真务实的思想意识,使他们在今后的生活和工作中形成科学的人生态度。

 试卷充分利用学科特点,创新试题设计,深入考查逻辑推理能力。采取的主要措施有:一是设问方式创新,例如全国二卷第19题要求考生画出交线围成的正方形,不必说明画法和理由,鼓励考生动手试验,进行创新尝试;二是试题的解决方案创新,例如全国一卷理科第16题引导考生将解三角形的原理推广运用到四边形中,要求考生打破常规思路,独立思考,积极探究;三是试题素材创新,例如北京卷文科第14题突出对图形、图表语言运用的考查,需要考生从题设图表中获取并处理相关信息进行逻辑推理。试题不落俗套,考查了考生逻辑思维的系统性。四是试题情境创新,例如浙江卷文科第7题将立体几何与平面几何知识有机结合,考查考生空间想象能力和推理论证能力,对考生逻辑思维的灵活性有较高要求。

 特点二:突出实践能力考查,增强创新应用意识

 数学源于生活与实践,数学知识是解决实际问题的有力工具,数学也是培养理性思维的重要学科,对创新应用意识的形成和发展具有重要作用。

 试题重视现实生活中的热点问题,紧密结合社会实际和现实生活,考查考生运用数学工具和思想方法分析、解决问题的能力,体现了数学在解决实际问题中的重要作用和应用价值,体现了高考改革中加强实践性、应用性的要求。试卷中有很多涉及应用背景的试题,贴近考生实际,让考生深深感受到数学就在他们的身边。例如,全国一卷第19题,要求考生根据试题所给的散点图,自主选择回归方程类型,对企业投入产品的宣传费用进行预测。江苏卷第17题以山区修公路为背景,要求考生建立数学模型,适度创新,运用所学数学知识分析问题,完成山区公路设计。试题的设计使考生置身于问题情境之中,充分体现数学的应用价值,激发学生学习数学的兴趣,自觉形成创新应用意识,彰显数学的理性精神与人文情怀,进而影响学生的情感态度价值观。

 实践应用能力的培养是素质教育的根本要求,更是破除题海战术、死记硬背的有效措施,也有利于培养学生理论联系实际的思想方法和创新意识,形成良好的思维习惯。试题还突出了对实践能力的考查,要求考生动手实验,积极探索,运用所学数学知识技能和方法解决问题。例如四川卷第18题鼓励考生动手实验,在数学理性的指导下获得正确的实验结果。试题的设计有利于引导学生主动动手实验,积极思考问题。

 特点三:注重基础性考查,渗透数学传统文化

 数学各份试卷重视对数学基础的考查,试卷中考查基本概念、基本运算、基本思想方法的题目占到60%以上。同时试卷注重对高中所学内容的全面考查,在此基础上,试卷还强调对重点内容的重点考查,如在解答题中考查了函数、导数、三角函数、统计与概率、数列、立体几何、直线与圆锥曲线等中学数学重点内容。

 今年数学试卷的另一个亮点就是在基础试题中渗透中国数学文化。我国数学文化历史悠久,有许多不同于西方数学文化的鲜明特点:注重归纳、强调实用、讲究算法。中国古代数学名著《九章算术》、《数书九章》等在人类社会的发展中起着重要作用。试卷选取了体现中国古代优秀数学文化并与中学数学内容结合紧密的素材,编拟试题,要求考生运用所学的基础知识、基本思想方法去解决问题。例如全国二卷第8题的设计思路来源于《九章算术》中的“更相减损术”,湖北卷第2题选自《数书九章》中的“米谷粒分”问题。这些试题的设计让考生感受到我国古代数学的优秀传统——数学要关注生产、生活等社会问题,从而引导考生通过了解数学文化,体会数学知识方法在认识现实世界中的重要作用。在高考试题中渗透中国古代数学文化,强调中国古代数学文化的传统特色,使考生在考查过程中,潜移默化地接受我国古代数学文化的熏陶,自觉形成严谨、务实的治学态度,传承中华优秀传统文化,弘扬爱国主义精神。

 数学试卷体现了课程标准理念,能够准确区分考生,有利于科学选拔人才,有利于学生全面发展,有利于促进社会公平。试题科学规范、设计新颖,情境设置合理,引导中学数学教学重视知识的生成、发展、迁移、归纳、拓展以及文化的传承。

;