DBSCAN聚类算法
该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。过滤低密度区域,发现稠密度样本点。同一类别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。
DBSCAN密度定义:DBSCAN是基于一组邻域来描述样本集的紧密程度的,参数? (?, MinPts)? 用来描述邻域的样本分布紧密程度。其中, 描述了某一样本的邻域距离阈值, MinPts? 描述了某一样本的距离为?的邻域中样本个数的阈值。
从上图可以很容易看出理解上述定义,图中MinPts=5,红色的点都是核心对象,因为其?-邻域至少有5个样本。黑色的样本是非核心对象。所有核心对象密度直达的样本在以红色核心对象为中心的超球体内,如果不在超球体内,则不能密度直达。图中用绿色箭头连起来的核心对象组成了密度可达的样本序列。在这些密度可达的样本序列的?-邻域内所有的样本相互都是密度相连的。
由密度可达关系导出的最大密度相连的样本集合,即为我们最终聚类的一个类别,或者说一个簇。这个DBSCAN的簇里面可以有一个或者多个核心对象。如果只有一个核心对象,则簇里其他的非核心对象样本都在这个核心对象的?-邻域里;如果有多个核心对象,则簇里的任意一个核心对象的?-邻域中一定有一个其他的核心对象,否则这两个核心对象无法密度可达。这些核心对象的-邻域里所有的样本的集合组成的一个DBSCAN聚类簇。
1、DBSCAN发现簇的过程
?初始,给定数据集D中所有对象都被标记为“unvisited”,DBSCAN随机选择一个未访问的对象p,标记p为“visited”,并检查p的 ?- 领域是否至少包含MinPts个对象。如果不是,则p被标记为噪声点。否则为p创建一个新的簇C,并且把p的 ?- 领域中所有对象都放在候选集合N中。DBSCAN迭代地把N中不属于其他簇的对象添加到C中。在此过程中,对应N中标记为“unvisited”的对象 P'?,DBSCAN把它标记为“visited”,并且检查它的 ?- 领域,如果 P' 的 ?- 领域至少包含MinPts个对象,则P' 的 ?- 领域中的对象都被添加到N中。DBSCAN继续添加对象到C,直到C不能扩展,即直到N为空。此时簇C完成生成,输出。
?为了找到下一个簇,DBSCAN从剩下的对象中随机选择一个未访问过的对象。聚类过程继续,直到所有对象都被访问。
还需考虑三个问题:
第一个是一些异常样本点或者说少量游离于簇外的样本点,这些点不在任何一个核心对象在周围,在DBSCAN中,我们一般将这些样本点标记为噪音点。DBSCAN算法很容易检测异常点。
第二个是距离的度量问题,即如何计算某样本和核心对象样本的距离。在DBSCAN中,一般采用最近邻思想,采用某一种距离度量来衡量样本距离,比如欧式距离。这和KNN分类算法的最近邻思想完全相同。对应少量的样本,寻找最近邻可以直接去计算所有样本的距离,如果样本量较大,则一般采用KD树或者球树来快速的搜索最近邻。
第三种问题,某些样本可能到两个核心对象的距离都小于?,但是这两个核心对象由于不是密度直达,又不属于同一个聚类簇,那么如果界定这个样本的类别呢?一般来说,此时DBSCAN采用先来后到,先进行聚类的类别簇会标记这个样本为它的类别。也就是说BDSCAN的算法不是完全稳定的算法。
2、DBSCAN算法流程
优点:
和传统的K-Means算法相比,DBSCAN最大的不同就是不需要输入类别数k,当然它最大的优势是可以发现任意形状的聚类簇,而不是像K-Means,一般仅仅使用于凸的样本集聚类。同时它在聚类的同时还可以找出异常点,对数据集中的异常点不敏感。一般来说,如果数据集是稠密的,并且数据集不是凸的,那么用DBSCAN会比K-Means聚类效果好很多。如果数据集不是稠密的,则不推荐用DBSCAN来聚类。
缺点:
1、如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合。
2、调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值?,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。一般这两个参数的确定靠经验值。如果觉得经验值聚类的结果不满意,可以适当调整?和MinPts的值,经过多次迭代计算对比,选择最合适的参数值。如果MinPts不变,?取得值过大,会导致大多数点都聚到同一个簇中,?过小,会导致一个簇的分裂;如果?不变,MinPts的值取得过大,会导致同一个簇中点被标记为离群点,?过小,会导致发现大量的核心点。
3、不适合高维数据,可以先进行降维操作
4、Sklearn中效率很慢,可以先执行数据削减策略
可视化演示的网址
参考文章
刘建平