复数知识点
复数知识点如下:
一、复数中的难点
(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
二、复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。
(3)复数的三种表示法的各种运算,在运算中重视***扼复数以及模的有关性质。复数的运算是复掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容数中的主要内容。
(4)复数集中一元二次方程和二项方程的解法。
三、运算法则
加法法则复数的加法法则:设z1=a+bi,z2c+di是任意两个复数。两者和的实部是原来两个复数实部的它的虚部是原来两个虚部的和。两个复数的和依然是复数和,即(a+bi)+(c+di)=(a+c)+(b+d)i。
乘法法则——复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=?1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
除法法则——复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(xyER)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的***扼复数,再用乘法法则运。