郝海的科研成果
近年在国外及回国工作以来,主要围绕超轻合金材料制备、外场控制金属凝固、成型过程模拟、材料组织性能表征、金属固态相变工艺优化等方面开展研究,主要的研究成果总结如下:
镁合金凝固控制和细晶强韧化技术研究
近年研究了电磁场作用对镁合金凝固组织及性能的影响,同时对比研究了普通连铸、电磁连铸及强磁场作用下细化剂对铝及镁合金的细化效果,结果表明在磁场与细化剂的***同作用下的晶粒细化效果优于二者单独作用下的效果。针对超声场作用下AZ31镁合金的凝固组织变化研究表明,而超声条件下得到的AZ31显微组织中第二相变细变薄,晶粒变圆整和均匀,可见超声场的空化作用和声流效应能够改善镁合金的显微组织。该方向研究工作已得到国家高技术研究发展计划(863)项目“镁合金复合外场及合金化细晶强韧化技术研究”(2009AA03Z525)资助。
超轻合金与多孔泡沫金属制备基础研究
开展超轻型镁合金的基础研究,并提出将超轻合金设计与外场作用成型工艺相结合制备优质超轻材料的研究思路,充分利用超轻镁锂系合金的极低的密度(1.35g/cm3甚至更低)、优良的变形加工性能、阻尼减振及抗高能粒子穿透等优点,同时通过合金化与外场作用等手段细化晶粒、去除杂质、减少偏析,提高超轻镁合金的力学性能、改善耐热耐蚀性能,以满足航空、航天、汽车制造等工业对材料轻量化、高强韧的需求。该方向部分研究工作已得到教育部科学技术研究重点项目“电磁/超声场作用下镁锂合金铸坯成型基础研究”(107031)、辽宁省自然科学基金项目“超轻镁合金计算智能设计与成型工艺优化”(20082172)和大连理工大学交叉学科建设专项基金“基于神经网络和粒子群算法的超轻镁合金材料设计建模与优化方法研究”资助。近期开展了泡沫金属熔体发泡数值计算及相关工艺实验,旨在制备兼具结构和功能材料特点的多孔金属材料。
轻合金高效连铸技术及多场耦合模拟研究
作为生产变形轻合金毛坯以及压铸重熔锭的主要手段,直冷连续铸造技术已在铝合金的生产中得到广泛应用,但用于生产镁合金尚不普及。掌握镁合金连铸生产技术的少数几个厂家也存在拉坯速度较慢、铸锭有热裂倾向、表面质量欠佳等问题。针对镁合金直冷连铸锭进行了数值模拟与实验研究,建立了可计算缺陷较易产生的连铸初始态的热场/应力场模型,并采用工业实测数据进行了对比修正,其结果可用来对连铸工艺方案进行优化。该工作的创新点在于采用实验及数值计算手段确定固态及半固态下镁及铝合金的应力应变行为并建立能合并到数学模型中的本构方程;建立连铸锭二冷区沸腾曲线,精确化连铸数学模型的边界条件;建立热裂判据并运用到模型中以预测裂纹倾向;优化连铸工艺参数, 提高铸造速度并降低裂纹倾向。
外场作用下轻合金成型及材料的组织性能演变机理研究
电磁连铸技术同时利用水冷模和电磁场来***同约束液态金属成型, 电磁力的存在减轻了铸造过程中液体金属与结晶器壁的摩擦, 从而降低了铸坯表层金属的二次重熔倾向, 因此可减少摩擦痕及偏析瘤等表面缺陷的产生, 同时电磁力对液体金属有搅拌作用, 从而使铸锭组织均匀、晶粒细化。对铝合金、铜合金、钢的电磁铸造研究结果表明,电磁连续铸造方法对于改善合金铸材的质量非常有效,电磁场下成型的铸坯其组织结构及力学性能都大大优于普通连铸坯。通过同时采用水冷模和电磁场, 有效提高宽结晶范围轻合金的连铸速度, 并改善铸锭的表面质量和微观组织, 也减轻铸锭中的偏析程度。该研究首次将直喷式有缝水冷模和电磁场结合起来运用到轻合金直冷连铸中,研究设计的旨在提高铸速的电磁连铸结晶器及分体式的冷却水系统,不仅可用于铝合金,也可推广用于镁合金连铸。