费马小定理

费马小定理:如果p是一个素数,而a是任何不能被p整除的整数,那么p能除a - 1。

这个由皮埃尔·德·费马在1640年发现的数字性质,本质上是说,取任意素数p和任意不能被该素数整除的数a,假设p = 7, a = 20。通过费马小定理,我们发现:

费马小定理通常用来检验一个数是否是素数,是素数的必要非充分条件。

然而满足费马小定理检验的数未必是素数,这种合数叫做卡迈克尔数(Carmichael Number),最小的卡迈克尔数是561A002997