在四边形abcd中
解答:(1)证明:连结BD,取DB的中点H,连结EH、FH.
∵E、F分别是BC、AD的中点,
∴EH∥AB,EH=
1 |
2 |
1 |
2 |
∵∠BME=∠CNE,
∴HE=HF,
∴AB=CD;
(2)解:连结BD,取DB的中点H,连结EH、OH,
∵AB=CD,
∴HO=HE,
∴∠HOE=∠HEO,
∵∠OEC=60°,
∴∠HEO=∠AGO=60°,
∴△OEH是等边三角形,
∵AB=DC=5,
∴OE=
5 |
2 |
解答:(1)证明:连结BD,取DB的中点H,连结EH、FH.
∵E、F分别是BC、AD的中点,
∴EH∥AB,EH=
1 |
2 |
1 |
2 |
∵∠BME=∠CNE,
∴HE=HF,
∴AB=CD;
(2)解:连结BD,取DB的中点H,连结EH、OH,
∵AB=CD,
∴HO=HE,
∴∠HOE=∠HEO,
∵∠OEC=60°,
∴∠HEO=∠AGO=60°,
∴△OEH是等边三角形,
∵AB=DC=5,
∴OE=
5 |
2 |