不定积分换元法
令√(1+t)=u,得t=u?-1,dt=2udu
∫1/[1+√(1+t)]dt
=∫2u/(1+u)du
=2∫[(1+u)-1]/(1+u)du
=2∫du-2∫1/(1+u)d(1+u)
=2u-2ln(1+u)+C
=2√(1+t)-2ln[1+√(1+t)]+C
令√(x?+a?)=t,得x?=t?-a?,dx?=2tdt
∫√(x?+a?)/xdx
=∫x√(x?+a?)/x?dx
=[∫√(x?+a?)/x?dx?]/2
=[∫2t?t/(t?-a?)dt]/2
=∫[(t?-a?)+a?]/(t?-a?)dt
=∫dt+a?∫1/(t?-a?)dt
=t+aln[(t-a)/(t+a)]/2+C
=√(x?+a?)+aln{[√(x?+a?)-a]/[√(x?+a?)+a]}/2+C
令√(1+2/x)=u,得x=2/(u?-1),dx=-4u/(u?-1)?
∫√(x?+2x)/x?dx
=∫√[4/(u?-1)?+4/(u?-1)]/[4/(u?-1)?]?[-4u/(u?-1)?]du
=-∫u√[4+4(u?-1)/(u?-1)?]du
=-2∫u?/(u?-1)du
=-2∫[(u?-1)+1]/(u?-1)du
=-2∫du-2∫1/(u?-1)du
=ln[(1+u)/(1-u)]-2u+C
=ln[(1+√(1+2/x))/(1-√(1+2/x))]-2√(1+2/x)+C
此处√(1+2/x)=u经过两次代换
首先令x=1/t,得dx=-1/t?dt,得到∫√(1+2t)/tdt,再令√(1+2t)=u,即√(1+2/x)=u
令√(e^u+1)=t,得u=ln(t?-1),du=2t/(t?-1)dt
∫1/√(e^u+1)du
=∫1/t?2t/(t?-1)dt
=∫1/(t?-1)dt
=ln[(t-1)/(t+1)]+C
=ln[(√(e^u+1)-1)/(√(e^u+1)+1)]+C
令x=1/t,得dx=-1/t?dt
∫1/x√(a?-b?x?)dx
=-∫t/√(a?-b?/t?)?1/t?dt
=-∫t?/√(a?t?-b?)?1/t?dt
=-∫1/a√[t?-(b/a)?]dt
=-ln[t+√(t?-b?/a?)]/a+C
=-ln[1/x+√(1/x?-b?/a?)]/a+C
=ln{ax/[a+√(a?-b?x?)]}/a+C
令√(1+lnx)=t,得x=e^(t?-1),dx=2te^(t?-1)
∫√(1+lnx)/xlnxdx
=∫t/(t?-1)e^(t?-1)?2te^(t?-1)dt
=2∫t?/(t?-1)dt
=2∫[(t?-1)+1]/(t?-1)dt
=2∫dt+2∫1/(t?-1)dt
=2t+ln[(t-1)/(t+1)]+C
=2√(1+lnx)+ln[(√(1+lnx)-1)/(√(1+lnx)+1)]+C