数列an的前n项和为sn
解:
2Sn=a(n+1)-2?+1
2Sn=S(n+1)-Sn+2·2?-3·2?+3/2 -1/2
S(n+1)+2? -?=3Sn +3·2? -3/2=3(Sn+2?-?)
[S(n+1)+2? -?]/(Sn+2?-?)=3,为定值
S1+2?-?=a1+2?-?=1+4-?=9/2
数列{Sn+2?-?}是以9/2为首项,3为公比的等比数列
Sn+2?-?=(9/2)·3?=?·3?
Sn=?·3?-2?+?
n≥2时,
an=Sn-S(n-1)=?·3?-2?+?-(?·3?-2?+?)=3?-2?
n=1时,a1=3?-2?=3-2=1,同样满足表达式。
数列{an}的通项公式为an=3?-2?