数列an的前n项和为sn

解:

2Sn=a(n+1)-2?+1

2Sn=S(n+1)-Sn+2·2?-3·2?+3/2 -1/2

S(n+1)+2? -?=3Sn +3·2? -3/2=3(Sn+2?-?)

[S(n+1)+2? -?]/(Sn+2?-?)=3,为定值

S1+2?-?=a1+2?-?=1+4-?=9/2

数列{Sn+2?-?}是以9/2为首项,3为公比的等比数列

Sn+2?-?=(9/2)·3?=?·3?

Sn=?·3?-2?+?

n≥2时,

an=Sn-S(n-1)=?·3?-2?+?-(?·3?-2?+?)=3?-2?

n=1时,a1=3?-2?=3-2=1,同样满足表达式。

数列{an}的通项公式为an=3?-2?