X射线与物质的相互作用及吸收

(一)X射线与物质的相互作用

特征X射线是一种低能电磁辐射,它与物质的相互作用形式与γ射线相类似,但由于其能量较低,所以与γ射线稍有不同。其主要作用是光电效应、相干散射和非相干散射,不会发生电子对效应。

1.光电效应

X射线的光电效应是X射线一次将全部能量交给原子,X射线本身消失。在原子核的参与下,进行能量分配,一部分用于克服轨道电子的结合能,其余全部作为电子的动能,放出光电子,这一现象在低能电磁辐射与物质作用时占有重要的地位。

2.散射效应

X射线的散射效应是X射线与核外电轨道电子作用,在作用过程中并没有将全部能量转移给电子,其间有两种情况可能出现。

(a)非相干散射或称为康普顿散射,这是X射线与核处轨道电子发生的非弹性散射,X射线将部分能量转移给电子,使轨道电子获得足够的能量克服其结合能而冲出原子,形成反冲电子,而X射线损失部分能量并改变运动方向。

(b)相干散射,包括汤姆逊散射和瑞利散射,这是X射线与电子的弹性散射,在光子能量较低和靶物质的原子序数较大时,相对于康普顿散射而言,这种散射占有比较大的优势,这一现象可以解释为X射线作为一种电磁辐射,在与核外电子作用时,迫使轨道电子按其频率振动,然后发射与原入射电磁辐射频率相同的电磁辐射。从宏观现象看,则表现为入射X射线改变传播方向,而波长或能量不变。

(二)X射线的吸收与跃变

X射线与物质作用产生光电效应、散射效应,使X射线强度随介质层厚度的增加而逐渐减弱。对于单能量的X射线来说,通过均匀层时X射线强度随吸收物质的厚度增加将按指数规律衰减:

放射性勘探方法

式中:d为吸收物质层的厚度,cm;μ为吸收系数,表示X射线通过1cm厚度物质被吸收的几率,cm-1;I为X射线经过厚度d物质层后剩余的X射线强度;I0为起始X射线强度。

当X射线强度衰减为入射X射线强度一半时的物质的厚度称半吸收厚度。即 = ,d1/2为半吸收厚度。

根据定义,我们可以计算出半吸收厚度的表达式: 。表4-4列出了几种能量的X射线在若干物质中的半吸收厚度。

表4-4 列出几种能量的X射线在若干物质中的半吸收厚度

定义为质量吸收系数,cm2/g,ρ为吸收物质的密度,g/cm3;上述公式可以写成

放射性勘探方法

式中dm为面密度,g/cm2;

X射线与物质相互作用,会使X射线能量减弱,这种作用的几率也可用原子截面表示,符号为μa,表示单位面积上每个原子对光子的吸收几率,即

放射性勘探方法

式中:A为相对原子质量;L为阿伏伽德罗常数(6.023×1023);N为单位体积吸收物质中的原子数。

总吸收系数等于光电吸收系数、相干散射和非相干散射系数之和:

μ=τ+(σin+σcoh)

μm=μ/ρ=τ/ρ+(σin/ρ+σcoh/ρ)

多元素组成的混合物、化合物和混合溶液的总的有效质量吸收系数,可用下列方法求得:

放射性勘探方法

式中:CA,CB,CC……分别为混合物中A,B,C……各元素的质量浓度;(μ/ρ)A,(μ/ρ)B,(μ/ρ)C……各元素的质量吸收系数;Ci和(μ/ρ)i分别为第i元素质量浓度和质量吸收系数。

如果是单一成分的矿石,只有一个质量浓度CA的待分析元素A,则有下式一个特殊形式,总质量吸收系数为

放射性勘探方法

以上讨论的只是对单能X射线才是正确的。如果入射到混合物上的是多能量X射线,实验证明,可以对多能量X射线求取一个有效能量。于是,在计算质量吸收系数时,可以当作单能进行处理。

实验证明,每个元素的质量吸收系数为 X 射线光子能量 (或波长)的函数,其图形称为X射线吸收谱,如铅 (Z=82),锡 (Z=50)、铜 (Z=29)和硅 (Z=14)的吸收谱示于图4-4。在图中同时给出了光电吸收截面 (τPH)。相干散射截面 (σcoh)和非相干散射截面 (σin)曲线。三者之和为 X 射线的吸收光谱。在图中清楚地表明总的吸收曲线和光电吸收曲线几乎一致的,只是在比较高能量时才明显地分开。

吸收曲线(图4-4)的另一个特点是K、LⅠ、LⅡ、LⅢ和MⅠ、MⅡ、MⅢ、MⅣ、MⅤ处出现吸收截面的跃变,称为吸收限或临界能量(临界波长)。它表示逐出原子某壳层电子所需要的最小能量,即等于(4-3)式所示的电子结合能。因此,每个原子壳层有一个K层吸收限(Kab);三个L层吸收限(LⅠab、LⅡab、LⅢab),五个M层吸收限(MⅠab、MⅡab、MⅢab、MⅣab、MⅤab)等。在这些吸收限跃变中最突出的跃变差大的是Kab,即近核的K层临界吸收能量最大,依次向外是EKab>ELab>EMab>……见附录4。