陈景润后来摘取了“数学皇冠上的明珠”,这指的是什么

答案一:

没有摘取

所谓皇冠上的明珠是指哥德巴赫猜想的证明:即:任意一个不小于6的自然数都能表示成2个素数之和

陈景润证明到:任意一个不小于6的自然数都能表示成p1+p2*p3的形式

其中,p1,p2,p3都是素数

虽然只差一步,但其中的距离如鸿沟,人类目前为止还不能解决,陈景润是目前离哥德巴赫猜想证明最近的人

答案二:

1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题即:任何一个偶数均可表示两个素数之和.1966年我国数学家陈景润证明了“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积”通常简称为(1+2).而数学皇冠上的明珠就是哥德巴赫猜想,陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想.

答案三:

哥德巴赫曾提出这样一个命题即:任何一个大于6的偶数均可表示两个奇因素之和,任何一个大于9的奇数都可以表示成3个奇因素之和.这个命题也叫千古之谜“1+1“.我国青年数学家陈景润证明了“1+2”,他的证明方法被誉为“陈氏定理”,陈景润本人也被人称为“推动了群山的发展”,更获得了飞人博尔特的称号.冠上的明陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想.其实这句话之前还有一句.曾经陈景润的老师说过:“数学是科学的王后,数论是王后上的王冠,而哥德巴赫猜想则是王冠上的明珠”.

答案四:

陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想.(具体内容:哥德巴赫提出了‘任何一个偶数均可表示两个素数之和’,简称1+1.他一生也没证明出来,之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题. 而陈景润却用一次次数学计算证明了哥德巴赫猜想,把哥德巴赫猜想原来的“1+1”改变成“2+1”,2+1是正确的)

答案五:

应该是数论皇冠上的明珠,也可称为数学皇冠上的明珠,哥德巴赫猜想俗称(1+1),即每个大于4的偶数都可以表示成两个质数的和.1966年,我国陈景润证明1+2,这是目前对于哥德巴赫猜想最好的结果,虽然离1+1只有一步之遥,但这一步难于上青天.

\求采纳