方差的计算公式高中

方差的计算公式高中如下:

S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]。其中:x为这组数据中的数据,n为大于0的整数。

一、方差

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S^2。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。计算公式为:S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]。其中:x为这组数据中的数据,n为大于0的整数。

二、方差的定义和性质

1、方差是一组数据中每个值与数据平均数之差的平方的平均数,在概率论中用来度量随机变量和其均值之间的偏离程度,在统计学中是一组数据时离散程度的度量。方差是衡量一组随机变量值偏离其平均值的程度,是各个数据与平均值差值的平方和除以数据个数。

2、方差越大,说明各个数据值之间的离散程度越大,方差越小则说明各个数据值之间的离散程度越小。极差,又称范围误差或全距,用字母R表示,用来表示统计资料中的变异量数,通过最大值减最小值后得出数据,反映一组数据变化范围的大小。极差不能用作比较,因为数据的单位不同,方差能用作比较,因为都是个比率。

3、当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

4、样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。