复变函数与积分变换

添加平面∑1:z=h (x^2+y^2≤h^2),取上侧,则∑与∑1组成一个封闭曲面,方向是外侧,三个偏导数都是0,所以由高斯公式,积分是0。

所以,

∫∫(∑)(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy

=-∫∫(∑1)(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy

=-∫∫(∑1)(x^2-y)dxdy

=-∫∫(D)(x^2-y)dxdy ∑1在xy面上的投影区域D:x^2+y^2≤h^2

=-∫∫(D) x^2 dxdy

=-1/2 ∫∫(D) (x^2+y^2)dxdy

=-1/2 ∫0→2π dθ ∫0→h ρ^3 dρ=-πh^4/4