平面向量与空间向量的区别与联系

关于平面向量与空间向量的区别与联系如下

基本区别不大,只是空间向量比平面向量多一个方向而已。方法和平面向量分配律的方法本质上是一样的。

空间中具有大小和方向的量叫作空间向量。向量的大小叫作向量的长度或模(modulus)。规定:1.长度为0的向量叫作零向量,记为0。2.模为1的向量称为单位向量。3.与向量a长度相等而方向相反的向量,称为a的相反向量。

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。

空间向量的运算如下:

空间向量就是空间中具有大小和方向的量,其运算方法是:PM=xPA+yPB。

1、空间向量及运算,垂直三垂线定理先看下,或者通过线面垂直得到面面垂直,或者通过两个面的法向量垂直得到这两个面垂直。线面平行得到线线平行或者面面平行,注意得是不平行的在同一个面上的两条直线分别与另一个面的两条直线平行,这两个面才平行。

2、空间向量,加法与减法,空间向量的加减法与平面向量没有区别,就是平行四边形法则和三角形法则,如果两个向量初始位置没有交点的话,要移到起点相同或者首尾相接的位置。如果你是要用坐标运算,那空间向量无非就是多出一个z的分量而已,方法也是和平面一样的。

3、平面向量的坐标运算,A和B中需要注意的是,一个坐标可以代表无数个向量,比如起点是(1,1),终点是(2,3)的向量,和起点是(0,0),终点在(1,2)的向量,他们的坐标表示都是(1,2),然而这并不与A,B矛盾,注意正反的区别。