“函数”必考知识点及常考题型总结

“函数”必考知识点及常考题型总结_整理高中“函数”必考知识点及常见题型

整理高中“函数”必考知识点及常见题型函数恒成立问题是高考的重点也是难点,对于这类问题,最重要的是转化,把未 知转化为已知, 让问题更加清楚明白!那如何进行转化呢?下面瑞德特数学周老 师介绍几种方法,大家要仔细研究哦! 1 利用函数思想2 分离参数法3 判别式法4 利用函数单调性5 恒成立问题 (1)利用一元不等式在区间上恒成立的充要条件(2)利用一元二次不等式在区间上恒成立的充要条件6 待定系数法7 不等式法8 特值法9 确立主元法10 整体换元法

“函数”必考知识点及常考题型总结_高中数学集合与函数的概念知识点归纳与常考题型专题练习(附解析)

高中数学集合与函数的概念 知识点归纳与常考题型专题练习(附解析) 知识点: 第一章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 知识要点 1、集合的含义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2、集合的中元素的三个特性 (1)元素的确定性; (2)元素的互异性; (3)元素的无序性 2、“属于”的概念 我们通常用大写的拉丁字母 A,B,C, ……表示集合,用小写拉丁字母 a,b,c, ……表示元素 如:如果 a 是集合 A 的元素,就说 a 属于集合 A 记作 a∈A,如果 a 不属于集合 A 记作 a ? A 3、常用数集及其记法 非负整数集(即自然数集)记作:N;正整数集记作:N*或 N+ ;整数集记作:Z;有理 数集记作:Q;实数集记作:R 4、集合的表示法 (1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(2)描述法:用集合所含元素的公***特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式 x-3>2 的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(Venn 图) 1.1.2 集合间的基本关系 知识要点 1、“包含”关系——子集 一般地,对于两个集合 A 与 B,如果集合 A 的任何一个元素都是集合 B 的元素,我们就说 这两个集合有包含关系,称集合 A 为集合 B 的子集,记作 A ? B 2、“相等”关系 如果集合 A 的任何一个元素都是集合 B 的元素,同时,集合 B 的任何一个元素都是集合 A 的元素,我们就说集合 A 等于集合 B,即:A=B ? 3、真子集 如果 A ? B,且 A ? B 那就说集合 A 是集合 B 的真子集,记作 A ? B(或 B ? A) 4、空集 不含任何元素的集合叫做空集,记为 Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 1.1.3 集合的基本运算 A ? B且 B ? A 知识要点 1、交集的定义 一般地,由所有属于 A 且属于 B 的元素所组成的集合,叫做 A,B 的交集.记作 A∩B(读作“A 交 B”),即 A∩B={x| x∈A,且 x∈B}. 2、并集的定义 一般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集。记作: A∪B(读作“A 并 B”),即 A∪B={x | x∈A,或 x∈B}. 3、交集与并集的性质 A∩A = A,A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A , A∪B = B∪A. 4、全集与补集 (1)全集 如果集合 U 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通 常用 U 来表示。

(2)补集 设 U 是一个集合,A 是 U 的一个子集(即 A ? U) ,由 U 中所有不属于 A 的元素组成的集 合,叫做 U 中子集 A 的补集(或余集) 。记作: CUA ,即 CSA ={x | x ? U 且 x ? A} (3)性质 CU(C UA)=A,(C UA)∩A=Φ,(C UA)∪A=U; (C UA)∩(C UB)=C U(A∪B),(C UA)∪(C UB)=C U(A∩B). 1.2 函数及其表示 1.2.1 函数的概念 知识要点 1、函数的概念 设 A、 B 是非空的数集, 如果按照某个确定的对应关系 f, 使对于集合 A 中的任意一个数 x, 在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函 数.记作: y=f(x),x∈A. 其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数 值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意 (1)如果只给出解析式 y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个 式子有意义的实数的集合; (2)函数的定义域、值域要写成集合或区间的形式. 定义域补充 求函数的定义域时列不等式组的主要依据是 (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底数必须大于零且不等于 1. (5) 如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的定义域是使各部分都 有意义的 x 的值组成的集合. (6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. (注意:求出不等式组的解集即为函数的定义域.) 2、构成函数的三要素 定义域、对应关系和值域 注意 (1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定 的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 。

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值 的字母无关。

3、相同函数的判断方法 (1)定义域一致; (2)表达式相同 (两点必须同时具备) 值域补充 (1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其 定义域. (2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复 杂函数值域的基础。

4、区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 1.2.2 函数的表示法 知识要点 1、常用的函数表示法及各自的优点 (1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个 图形是否是函数图象的依据:作垂直于 x 轴的直线与曲线最多有一个交点。

(2)函数的表示法 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有代表性,

“函数”必考知识点及常考题型总结_数三高数考查重点和题型总结

考研数学三高等数学考察重点及题型总结重要度等 章节 知识点 题型 级 等价无穷小代换、洛必达法则、 第一章 函 泰勒展开式 数、极限、 函数连续的概念、 函数间断点的 连续 类型 导数的定义、 可导与连续之间的 按定义求一点处的导数, 可导与连 ★★★★ 关系 第二章 一 函数的单调性、函数的极值 元函数微 闭区间上连续函数的性质、 罗尔 分学 定理、拉格朗日中值定理、柯西 中值定理和泰勒定理 第三章 一 元函数积 定积分的应用 分学 函数在一点处极限的存在性, 连续 第四章 多 隐函数、偏导数、全微分的存在 性,偏导数的存在性,全微分存在 ★★★ 元函数微 积分学 二重积分的概念、性质及计算 性以及它们之间的因果关系 性与偏导数的连续性的讨论与它 们之间的因果关系 二重积分的计算及应用 ★★★★★ 用定积分计算几何量 ★★★★ 积分上限的函数及其导数 变限积分求导问题 ★★★★★ 微分中值定理及其应用 ★★★★★ 讨论函数的单调性、极值 ★★★★ 续的关系 判断函数连续性与间断点的类型 ★★★ 求函数的极限 ★★★★★级数的基本性质及收敛的必要 第五章 无 条件,正项级数的比较判别法、 数项级数敛散性的判别 穷级数 比值判别法和根式判别法, 交错 级数的莱布尼茨判别法 第六章 常 一阶线性微分方程、齐次方程, 用微分方程解决一些应用问题 微分方程 微分方程的简单应用 ★★★★ ★★★★★