七年级下册期末考试数学试题含答案(3)

五、解答题(***3小题,***23分)

 23.(8分)(2012?广陵区二模)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行?月总收入=基本工资+计件奖金?的方法,而?计件奖金=销售每件的奖金?月销售件数?,并获得如下信息:

 营业员 甲 乙

 月销售件数(件) 200 150

 月总收入(元) 1400 1250

 (1)列方程(组),求营业员的月基本工资和销售每件的奖金;

 (2)营业员丙月总收入不低于1800元,这位营业员当月至少要卖服装多少件?

 考点: 一元一次不等式的应用;二元一次方程组的应用.

 专题: 应用题.

 分析: (1)设营业员月基本工资为b元,销售每件奖励a元,因为月总收入=基本工资+计件奖金,且计件奖金=销售每件的奖金?月销售件数,根据表格中提供的数据可列方程组求解.

 (2)设营业员丙当月要卖服装x件,根据月总收入=基本工资+计件奖金,营业员丙月总收入不低于1800元,可列不等式求解.

 解答: 解:(1)设营业员月基本工资为b元,销售每件奖励a元.依题意,

 得,

 解得a=3,b=800.

 (2)设营业员丙当月要卖服装x件.

 依题意,3x+800?1800,解得 .

 答:小丙当月至少要卖服装334件.

 点评: 本题考查理解题意的能力,关键是根据题目所提供的等量关系和不等量关系,列出方程组和不等式求解.

 24.(7分)在平面直角坐标系中,设坐标的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题.

 (1)填表:

 P从点O出发时间 可得到整数点的坐标 可得到整数点的个数

 1秒 (0,1)、(1,0) 2

 2秒(0,2)(2,0)(1,1) 3

 3秒(0,3)(3,0)(2,1)(1,2) 4

 (2)当点P从点O出发12秒,可得到整数点的个数是 13 个.

 (3)当点P从点O出发 13 秒时,可得到整数点(8,5).

 (4)当P点从点O出发 (m+n) 秒时,可得到整数点是(m,n).

 考点: 规律型:点的坐标.

 分析: (1)在坐标系中全部标出即可;

 (2)由(1)可探索出规律,推出结果;

 (3)可将图向右移8个单位,用8秒;再向上移动5个单位用5秒;

 (4)可将图向右移m个单位,用8秒;再向上移动n个单位用5秒.

 解答: 解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;

 再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.

 P从O点出发时间 P点可能到的位置(整数点的坐标)

 1秒 (0,1)或(1,0)

 2秒 (0,2)、(1,1)、(2,0)

 3秒 (0,3)、(1,2)、(2,1)、(3,0)

 (2)∵1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么12秒时,应达到13个整数点;(3)横坐标为8,需要从原点开始沿x轴向右移动8秒,纵坐标为5,需再向上移动5秒,所以需要的时间为13秒.(4)横坐标为m,需要从原点开始沿x轴向右移动m秒,纵坐标为n,需再向上移动n秒,所以需要的时间为(m+n)秒.

 故答案为:(0,2)、(1,1)、(2,0);3,(0,3)、(1,2)、(2,1)、(3,0),4;13;13;(m+n).

 点评: 此题主要考查了点的变化规律,解决本题的关键是掌握所给的方法,得到相应的可能的整数点的坐标.

 25.(8分)为了庆祝?七一?党的生日,育新街道办事处要制作一批宣传材料,蓝天广告公司报价:每份材料收费20元,另收设计费1000元;福康公司报价:每份材料费40元,不收设计费.

 (1)什么情况下选择蓝天公司比较合算;

 (2)什么情况下选择福康公司比较合算;

 (3)什么情况下两公司的收费相同.

 考点: 一元一次不等式的应用;一元一次方程的应用.

 分析: 设制作宣传材料数为x,则甲广告公司的收费为50x+2000,乙广告公司收费为70x,利用不等式及方程的知识,即可作答.

 解答: 解:设制作宣传材料数为x件,则蓝天广告公司的收费为(20x+1000)元,福康广告公司的收费为40x元,

 (1)当20x+1000<40x,即x>50时,选择蓝天广告公司比较合算;(2)当20x+1000>40x,即x<50时,选择福康广告公司比较合算;(3)当20x+1000=40x,即x=50时,两公司的收费相同.

 答:当制作宣传材料数为50件时,两公司的收费相同.

 点评: 本题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是表示出两家公司的收费,利用不等式及方程求解.

六、附加题(***2小题,选做1题,20分)

 26.(10分)已知关于x的不等式组 的所有整数解的和为﹣9,求m的取值范围.

 考点: 一元一次不等式组的整数解.

 专题: 计算题;分类讨论.

 分析: 首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.

 解答: 解:∵ ,由①得,x<﹣ ,

 ∵不等式组有解,

 ?不等式组的解集为﹣5

 ∵不等式组的所有整数解的和为﹣9,

 ?不等式组的整数解为﹣4、﹣3、﹣2或﹣4、﹣3、﹣2、﹣1、0、1.

 当不等式组的整数解为﹣4、﹣3、﹣2时,有﹣2<﹣ ?﹣1,m的取值范围为3?m<6;

 当不等式组的整数解为﹣4、﹣3、﹣2、﹣1、0、1时,有1<﹣ ?2,m的取值范围为﹣6?m<﹣3.

 点评: 正确解出不等式组的解集,并会根据整数解的情况确定m的取值范围是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

 27.(10分)如图,l1∥l2,MN分别和直线l1,l2交于点A,B,ME分别和直线l1,l2交于点C,D,点P在MN上(P与A,B,M三点不重合)

 ①如果点P在A,B两点之间运动时,?,?,?之间有何数量关系?请说明理由.

 ②如果点P在A,B两点外运动时,?,?,?之间有何数量关系?(只要求写出结论).

 考点: 平行线的性质.

 分析: (1)根据平行线的性质可求出它们的关系,从点P作平行线,平行于AC,根据两直线平行内错角相等可得出;

 (2)分类讨论,①点P在点AB延长线上时,②点P在BA延长线上时,分别过点P作PO∥l1∥l2,利用平行线的性质,可得出答案.

 解答: 解:(1)如图,过点P作PO∥AC,则PO∥l1∥l2,如图所示:

 =?DPO,?=?CPO,

 =?+?;

 (2)若点P在BA延长线上,过点P作PO∥AC,则PO∥l1∥l2,如图所示:

 则=?+?.

 (3)若点P在BA延长线上,过点P作PO∥AC,则PO∥l1∥l2,如图所示:

 则?=?+?.

 点评: 本题考查了平行线的性质,解答本题的关键是掌握:两直线平行内错角相等,同位角相等,同胖内角互补.