导数在函数中的应用

导数在函数中的应用如下:

1、最简单的应用是在出行选用交通工具方面,比如:为什么选用飞机,轮船、火车、汽车,除了经济方面的原因之外,就是速度,也就是对时间的要求,根据路程的长短选用交通工具。主要依据就是dS/dt=速度。

在速度方面的运用马拉松比赛是最明显的,比赛开始,运动员抢跑运用d^2S/dt^2获得最大的加速度,抢到最佳位置,然后运用dS/dt=恒定数,使跑步最省力的方法,一直保持匀速运动,到最后,加速度冲刺,最大地发挥体能效用。短跑是发挥dS/dt和d^2S/dt^2的最大效用。

2、在电力学方面:电流强度I=dq/dt,再配用电线方面根据家电的功率大小,选用不同粗细的电线;根据电器的功率大小选用不同的空气开关和断路器。

3、在最大值和最小值方面的应用:比如周长一定的情况下,面积最大的圆形,矩形里,面积最大是正方形;这些都在日常生活中得到应用。用的上下水管都是用圆形的,而不用方形的,就是最大限度地节省材料。粮囤和储油罐,都是做成圆形的,也是为了节省材料。建房都是尽可能接近正方形,使建房用料最节省。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。