树莓派使用PaddleX做物体分类
1.先使用百度AI运行代码。参考/aistudio/projectdetail/2160041链接网址,从而得到模型。但是paddlex运行得到的模型不能直接在树莓派上跑。所以进行第二步。
2.把模型转换成paddle-lite支持的模型。在百度studio,上一步的代码里运行
paddle_lite_opt --model_fie=你的模型途径
--param_file=你的权值途径
--valid_targets=arm
--optimize_out_type=naive_buffer
--optimize_out=你要的输出nb模型的途径和名称
3.执行以下分类代码,修改属于你的参数
from paddlelite.lite import *
import cv2
import numpy as np
import sys
import time
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
# 加载模型
def create_predictor(model_dir):
config = MobileConfig()
config.set_model_from_file(model_dir)
predictor = create_paddle_predictor(config)
return predictor
#图像归一化处理
def process_img(image, input_image_size):
origin = image
img = origin.resize(input_image_size, Image.BILINEAR)
resized_img = img.copy()
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) # HWC to CHW
img -= 127.5
img *= 0.007843
img = img[np.newaxis, :]
return origin,img
# 预测
def predict(image, predictor, input_image_size):
#输入数据处理
input_tensor = predictor.get_input(0)
input_tensor.resize([1, 3, input_image_size[0], input_image_size[1]])
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA))
origin, img = process_img(image, input_image_size)
image_data = np.array(img).flatten().tolist()
input_tensor.set_float_data(image_data)
#执行预测
predictor.run()
#获取输出
output_tensor = predictor.get_output(0)
print("output_tensor.float_data()[:] : ", output_tensor.float_data()[:])
res = output_tensor.float_data()[:]
return res
# 展示结果
def post_res(label_dict, res):
print(max(res))
target_index = res.index(max(res))
print("结果是:" + " " + label_dict[target_index])
if __name__ == '__main__':
# 初始定义
label_dict = {0:"metal", 1:"paper", 2:"plastic", 3:"glass"}
image = "./test_pic/images_orginal/glass/glass300.jpg"
model_dir = "./trained_model/ResNet50_trash_x86_model.nb"
image_size = (224, 224)
# 初始化
predictor = create_predictor(model_dir)
# 读入图片
image = cv2.imread(image)
# 预测
res = predict(image, predictor, image_size)
# 显示结果
post_res(label_dict, res)
cv2.imshow("image", image)
cv2.waitKey()