高中数学三角函数题,急,谢谢。
解:(1)由图像知,函数振幅为2,故A=2
由图像知从-π/3到2π/3是半个周期,故T=[(2π/3-(-π/3)]*2=2π
即2π/ω=2π, 所以ω=1
所以f(x)=2sin(x+φ)
把最高点(2π/3, 2)(或最低点(-π/3,-2))代入函数,得2=2sin(2π/3+φ)
故sin(2π/3+φ)=1
所以2π/3+φ=π/2+2kπ(k∈Z),
即φ=2kπ-π/6(k∈Z)
因为-π/2<φ<π/2
所以φ=-π/6
所以f(x)=2sin(x-π/6)
(2)因f(a)=3/2, 即sin(a-π/6)=3/4
所以sin(2a+π/6)=cos[π/2 -(2a+π/6)](这里利用诱导公式cos(π/2-a)=sina)
=cos(π/3-2a)=cos(2a-π/3)(这里利用诱导公式cos(-a)=cosa)
=cos[2(a-π/6)]=1-2[sin(a-π/6)]^2 (这里利用2倍角公式)
=1-2(3/4)^2=-1/8
即sin(2a+π/6)=-1/8