八个常用函数的拉氏变换

如下:

拉普拉斯变换(拉氏变换)是一种解线性微分方程的简便运算方法,是分析研究线性动态系统的有力数学工具。简单点说,我们可以使用它去解线性微分方程,而控制工程中的大多数动态系统可由线性微分方程去描述,因此拉氏变换是控制工程领域必不可少的基础。

拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。工程数学是好几门数学的总称。工科专业的学生大一学了高数后。就要根据自己的专业学“积分变换”、“复变函数”、“线性代数”、“概率论”、“场论”等数学,这些都属工程数学。

数学物理方程和特殊函数也是工学数学的一分支。

如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。

拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)。应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。

在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。