定义域的概念
定义域是指自变量x的取值范围。
函数定义域是一个数学名词,是函数的三要素(定义域、值域、对应法则)之一,对应法则的作用对象。指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。
三种常见的定义域:
1、设A,B是两个非空数集,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。记作:x→y=f(x),XEA.其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围,给定定义域。
2、a集合中有若干个元素,b集合中有若干个元素,能使a集合中的每一个元素都能在b集合中找到对应的元素,当a中的任意元素m,b都有唯一的n满足mx2=n时,则mx2=n是集合a到集合b的映射。
3、设X是一个非空集合,Y是非空数集 ,f是个对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数,记作y=fx,称X为函数fx的定义域,集合{y|y=fx,x∈X}为其值域,x叫做自变量,y叫做因变量等。