回魂梯是怎么弄出来的?

回魂梯在国际上又称彭罗斯阶梯(Penrose Stairs)、由莱昂内尔·彭罗斯( Lionel Penrose)和他的儿子罗杰·彭罗斯(Roger Penrose)创作。是彭罗斯三角形的一个变式。

这是一个由二维图形的形式表现出来的拥有4个90°拐角的四边形楼梯。由于它是个从不上升或下降的连续封闭循环图,所以一个人可以永远在上面走下去而不会升高。

原理方法:

假设东面为起点向南走,假设每阶楼梯落差是17厘米,我们把起点的下一阶楼梯水平面微微往上斜1厘米,这么细小的变化人在黑暗中是根本体会不到的。

那么有23阶楼梯,每阶其实都是斜一厘米的,总***往上斜了23厘米,减掉落差17 厘米,实际上人是往上走了6厘米,再换到西面,还是往上斜1厘米,走完23阶实际上又往上走了6厘米,加起来就是12厘米,再转到北面,前22阶楼梯都往上斜一厘米,最后一阶直接落在起点上。

因为起点是平的,那么实际上这一段只斜上去22-17等于5厘米,加上前面的6+6的总和12厘米正好又是17厘米,如此循环下去,永远走不完。

扩展资料:

几何悖论模型

1、莫比乌斯带

公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。

普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为"莫比乌斯带"(也就是说,它的曲面从两个减少到只有一个)。

2、克莱因瓶(Klein Bottle)

在数学领域中,克莱因瓶(Klein Bottle)是指一种无定向性的平面,比如2维平面,就没有“内部”和“外部”之分。

克莱因瓶最初的概念是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。克莱因瓶的结构非常简单,一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。

和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球?,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。