50道较难的一元二次方程
一元二次方程测试题
说明本试卷满分100分,考试时间100分钟
一、填充题:(2’×11=22’)
1、 方程x2= 的根为 。
2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。
3、 关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为 。
4、 已知二次三项式x2+2mx+4-m2是一个完全平方式,则m= 。
5、 已知 +(b-1)2=0,当k为 时,方程kx2+ax+b=0有两个不等的实数根。
6、 关于x的方程mx2-2x+1=0只有一个实数根,则m= 。
7、 请写出一个根为1,另一个根满足-1<x<1的一元二次方程是 。
8、 关于x的方程x2-(2m2+m-6)x-m=0两根互为相反数,则m= 。
9、 已知一元二次方程(a-1)x2+x+a2-1=0的两根为x1,x2,且x1+x2= ,则x1,x2= 。
10某木材场原有木材存量为a立方米,已知木材每年以20%的增长率生长,到每年冬天砍伐的木材量为x立方米,则经过一年后木材存量为 立方米,经过两年后,木材场木材存量为b立方米,试写出a,b,m之间的关系式: 。
二、选择题:(3’×8=24’)
11、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是( )
A、任意实数 B、m≠1 C、m≠-1 D、m>-1
12、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A、 若x2=4,则x=2 B、若3x2=bx,则x=2
C、 x2+x-k=0的一个根是1,则k=2
D、若分式 的值为零,则x=2
13、方程(x+3)(x-3)=4的根的情况是( )
A、无实数根 B、有两个不相等的实数根 C、两根互为倒数 D、两根互为相反数
14、一元二次方程x2-3x-1=0与x2+4x+3=0的所有实数根的和等于( )。
A、-1 B、-4 C、4 D、3
15、已知方程( )2-5( )+6=0,设 =y则可变为( )。
A、y2+5y+6=0 B、y2-5y+6=0 C、y2+5y-6=0 D、y2-5y-6=0
16、某超市一月份的营业额为100万元,第一季度的营业额***800万元,如果平均每月增长率为x,则所列方程应为( )
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
17、已知一元二次方程2x2-3x+3=0,则( )
A、两根之和为-1.5 B、两根之差为-1.5 C、两根之积为-1.5 D、无实数根
18、已知a2+a2-1=0,b2+b2-1=0且a≠b,则ab+a+b=( )
A、2 B、-2 C、-1 D、0
三、解下列方程:(5’×5=25’)
19、(x-2)2-3=0 20、2x2-5x+1=0(配方法)
21、x(8+x)=16 22、
23、(2x-3)2-2(2x-3)-3=0
四、解答题。
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。(6’)
25、某灯具店采购了一批某种型号的节能灯,***用去400元,在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。(6’)
26、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根,(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值。(8’)
初三一元二次方程训练题 1 姓名
一、填空题:(3、4、5 各3分,其余每空2分,***39分)
⒈ 把方程 化成一般式是 ;
2.关于 的方程 中, 二次项是 ; 常数项是 ;
一次项是 ;
⒊ 方程 的根是 ; ⒋ 方程 的根是 ;
⒌ 方程 的根是 ;
⒍ ⒎
⒏ ⒐
二、选择题(6分×3=18分)
1.在选择方程 , 中,应选一元二次方程的个数为-------------------( )
A 3 个 B 4 个 C 5 个 D 6 个
⒉ 方程 的实数根的个数是------------------------------------------------------------------- ( )
A 1个 B 2 个 C 0 个 D 以上答案都不对
⒊ 方程 的根是 ----------------------------------------------------------------( )
A B C D
三、解下列方程 ( 8分×4=32分)
(因式分解法) (因式分解法)
(配方法) (求根公式法)
四、解关于 的方程 ( 11 分 )
(6分) (5分)
五、选作
⑴ 已知两数的和是 , 积是 , 求这两数.(10分)
⑵ 已知 、 、 为三角形的三边, 求证 ∶方程 没有实数根 (10分)
中考题型:观察下列等式: ,用含自然数 的等式表示这种规律为
1.填空题:(5分×5=25分)
(1)我国1978年末城乡居民的存款为X亿元;1988年末的存款比1978年末的存款的18倍还多4亿元,则1988年末的存款为 亿元.
(2)甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,然后甲再追乙,那么在追及问题中,甲、乙二人的路程差是 米,甲、乙的速度差是——;甲追及乙的时间是 .
(3)一个两位数,个位上的数字为x,十位上的数为y,这个两位数可表示为_,
如果把十位和个位上的数字对调,新的两位数可表示为 .
(4)若甲、乙、丙、丁四种草药重量的比为0.1:1:2:4.7,设乙种草药的重量为x克,则甲、丙、丁四种草药的重量可分别表示为 克, 克, 克.
(5)甲、乙两人分别从相距20千米的A,B两地出发相向而行,甲先出发1小时,甲的速度是a千米/时,乙的速度是b千米/时,求乙出发多少时间,甲、乙二人相遇.若设乙出发X小时,甲、乙二人相遇,则依题意列方程应为
2.选择题:(5分× 3= 15分)
(1)甲、乙二人从同一地点出发去某地,若甲先走2小时,乙从后面追赶,则当乙追上甲时( )
A甲、乙二人所走路程相等 B.乙走的路程比甲多
C.乙比甲多走2小时 D.以上答案均不对
(2)一张试卷,只有25道选择题,做对一题得4分,做错~题倒扣 1分,某学生做了全部试题,***得70分,他做对了( )道题
A 17 B 18 C 19 D 20
(3)一件工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合做,( )
天可以完成
A.25 B.12.5 C.6 D.无法确定
3.列方程解应用题:(15分×4=60分)
(1)一条铁丝,第一次用去它的一半少 1米,第二次用去剩下的一半多 1米,结果还剩下3米,求这条铁丝原来长多少米?
(2)永盛电子有限公司向工商银行申请了甲乙两种贷款,***计68万元,每年付出利息8.42万元.甲种贷款每年的利率是 12%,乙种贷款每年的利率是 13%,求这两种贷款的数额是多少?
(3)甲列车从A地以50千米/时的速度开往B地,1小时后,乙列车从B地以70千米对的速度开往A地,如果A,B两地相距200千米,求两车相遇点距A地多远?
(4)某商店买进一批水果,进价每箱20元,计划零售时赚利30%,在卖出这批水果的又15箱时已盈利300元,问这个商店这次买进多少箱水果?
素质优化训练
1. 选择题:
(1)一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数,设这个三位数的前两位数为x,则列出的方程应是( ).
A.=10x+7 B.700+x-86=5(10x+7)
C. =x+7 D.5(700+x)=x+7+86
(2)甲、乙二人在400米的环形跑道上练习跑步,若同向跑,甲a分钟可超过乙一圈;若反向跑二人每隔b分钟相遇一次,则甲、乙速度之比为( )
A. B.
C. D.
(3)甲、乙、丙三人各有贺年片若干张要互相赠送,先由甲送乙、丙,所送的张数等于乙、丙原来的张数;再由乙送给甲、丙现在的张数;后由丙送甲、乙现在的张数,互送后每人各有32张,则原来每人各有贺年片( )张
A. 甲16,乙28,丙52 B. 甲52,乙16,丙28
C. 甲28,乙16,丙52 D. 甲52,乙28,丙16
(4)将55分成四个数,如果第一个数加上1,第二个数减去1,第三个数乘以2,第四个数除以3,所得的数都相同,那么这四个数分别是()
A.9,11,5,30 B.9,12,4,30
C.9,11,6,29 D.9,11,7,28
2.列方程解应用题:
(1)某学生骑自行车从学校去市内,先以12千米/时的速度下坡,又以9千米/时的速度通过平路,到达市内***用55分钟,返回时,他以8千米/时的速度通过平路,又以4千米/时的速度上坡,回到学校又用1小时.求从学校到市内有多少千米?
(2)汽车若干辆装运一批货物,如果每辆汽车装3.5吨,那么这批货物就有2吨不能运走;如果每辆汽车装4吨,那么装完这批货物后,还可以装其他货物一吨,这批货物***有多少吨?
(3)一船顺水航行24千米后又返回***用 2小时,而顺水航行8千米,逆水航行18千米,***用1小时,求水流速度和船在静水中的速度?
(4)甲、乙二人分别由A,B两地沿同一路线同时相向而行,在离B地12千米相遇后分别到达B,A两地,然后立即返回,在第一次相遇后6小时,两人又在离A地6千米处中遇,求A,B两地的距离及甲、乙二人的速度?
(5)一个六位数,左边第一位上的数字是1,这个六位数乘以3以后,仍是一个六位数,这个新的六位数恰好是把首位上的数字移到个位,而其余各位上的数字相应向左移动一位,求原来的六位数?
(6)有酒水混合液两种,甲种混合液中酒是水的3倍,乙种混合液中,水是酒的5倍现在要把这两种混合液混合成酒与水各占一半的溶液14升问甲、乙两种溶液应各取多少升?
(7)一组园丁要把两片草地的草割完,大的一片比小的一片大1倍.上午全体组员都割大片草地,下午一半组员仍留在大片草地,收工时正好把大片草地割完,另一半组员去割小片草地,收工时还剩下一部分没割完,第二天由一个园丁用一天时间恰好割完,问这组园丁***多少人?
(8)现在是10点和11点之间的某一时刻,在这之后6分钟,分针的位置与在这之前3分钟的时针的位置反向成一直线,求现在的时刻?
(9)某人下午六点多外出时,手表时针与分针的夹角为110°,下午约七点回家时,发现手表时针与分针的夹角又是110”,问他外出了多少时间?
(10)小王同时点燃粗细不同长短一样的两支蜡烛,已知粗的燃烧完要用4小时,细的燃烧完要用3小时,过一段时间后,小王把两支蜡烛同时熄灭,这时剩下的蜡烛细的是粗的,求小王点燃蜡烛的时间是多少?
(11)从两个重量分别为 12千克和 8千克并且含银的百分数不同的合金上各切下重量相同的两块,把所切下的每块与另一块剩余的合金混合,熔炼后合金含银的百分数相同,求所切下的合金的重量是多少?
生活实际运用
A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台已知从A市调运一台机器到C市、D市的运费分别为4百元和8百元;从B市调运一台机器到C市、D市的运费分别为3百元和5百元
(1)设B市运往C市机器x台,用x的代数式表示总运费W;
(2)若要求总运费不超过9千元,问***有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
知识探究学习
寻找数学解题捷径的五种方法(二)
4.巧避“非必求成份”,寻找解题捷径
在解题过程中,往往有些步骤和环节并不是非有不可的,这些可称为“非必求成份”,解题时若能明确解题的最终目的,巧妙避开“非必求成份”,就能省时省力,提高解题速度.
5.利用数形结合,寻找解题捷径数与形是可以相互转化为利用的,有些代数问题若借助于其几何意义,就能使问题直观明了,解法简化.
参考答案
同步达纲练习
1.(1)(18x+4); (2)6.5,0.5米/秒,13秒; (3)10y+x,10x+y; (4)0.1x,2x 4.7x;(5)a(x+1)+bx=20.
2.A C C
3.略
素质优化训练
1.(1)B;(2)D;
(3) D.(提示:由题意得,互送后每人各有32张,则3人***有96张,设甲有X张,则乙、丙***有(96-x)张,甲送乙、丙后剩下[x-(96-x)]张,乙送甲后,甲有2[x-(96-x)]张,丙送甲后,甲有4[x-(96-x)]张,列方程为:4[x-(96-x)]=32.解得x=52,同样方法能可求出乙、丙的张数);(4)A.(提示:可设变化后的数为x,则四个数分别是x-1,x+1,,3x,可列方程为x-1+x+1++3x=55).
2.(1)设平路长为x千米,则坡路长为12()千米,学校到市内的路程为[12()+x]千米,根据题意,得+=1,x=6. 12() +x=9.
(2)设这批货***有x吨,根据题意,得
(3)由题意可知逆水速度为18千米/时,设船顺水速度为x千米/时,则水流速度为千米/时,船在静水中的速度为千米/时,根据题意,得(1-1)x=8,x=24,.
(4)由题意可知第一次相遇用了3小时,甲速比乙速快2千米/时,设A、B两地距离为x千米,则甲速为千米/时,根据题意,得,x=30, =6.
(5)设原六位数的后五位数为x,则原六位数为100000+x,根据题意得3(100000+x)=10x+1,x=42875,100000+42857=142857.
(6)设甲种酒取x升,则乙种酒取 (14-x)升,根据题意,得x+(14-x)=7,x=8.14-x=6.
(7)设这组园丁***x人,根据题意,得 x=2(x+1),x=8.
(8)设现在的时刻是10点x分,根据题意,得6(x+6)+[60-(x-3)]=180,x=15.
(9)设他外出了x分钟,根据题意,得6x-x=220,x=40.
(10)解:令粗,细蜡烛的长度都为1,设点燃烛的时间是x小时,根据意,得1-=3(1-),x=2.
(11)设辅助未知数,设切下合金的重量是x千克,第一块合金含银a%,第二块合金含银b%,(a≠b).根据题意,得,整理得5(a-b)x=24(a-b), ∵a≠b, ∴x=4.
生活实际运用
1.①W=2x+86 ②3种 ③8600元