已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn.(Ⅰ)求n的值;(Ⅱ)求a1+2a2+3a3+…+nan的值

(Ⅰ)由

A5n
=56
C7n
得:n(n-1)(n-2)(n-3)(n-4)=56?
n(n?1)(n?2)(n?3)(n?4)(n?5)(n?6)
7?6?5?4?3?2?1

即(n-5)(n-6)=90,

解之得:n=15或n=-4(舍去),故n=15.

(Ⅱ)当n=15时,由已知有:

(1-2x)15=a0+a1x+a2x2+a3x3+…+a15x15,两边求导数,再令x=1可得a1+2a2+3a3+…+15a15=-30.

(Ⅲ)S=

C0n
+3
C1n
+5
C2n
+…+(2n?1)
Cn?1n
+(2n+1)
Cnn
,S=(2n+1)
Cnn
+(2n?1)
Cn?1n
+…+3
C1n
+
C0n

∴2S=(2n+2)(

C0n
+
C1n
+
C2n
+…+
Cnn
)=2(n+1)2n,

∴S=(n+1)2n=16?215=219.