已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn.(Ⅰ)求n的值;(Ⅱ)求a1+2a2+3a3+…+nan的值
(Ⅰ)由
A | 5n |
C | 7n |
n(n?1)(n?2)(n?3)(n?4)(n?5)(n?6) |
7?6?5?4?3?2?1 |
即(n-5)(n-6)=90,
解之得:n=15或n=-4(舍去),故n=15.
(Ⅱ)当n=15时,由已知有:
(1-2x)15=a0+a1x+a2x2+a3x3+…+a15x15,两边求导数,再令x=1可得a1+2a2+3a3+…+15a15=-30.
(Ⅲ)S=
C | 0n |
C | 1n |
C | 2n |
C | n?1n |
C | nn |
C | nn |
C | n?1n |
C | 1n |
C | 0n |
∴2S=(2n+2)(
C | 0n |
C | 1n |
C | 2n |
C | nn |
∴S=(n+1)2n=16?215=219.